schrodinger semigroups

schrodinger semigroups

ID:39713157

大小:6.89 MB

页数:80页

时间:2019-07-09

schrodinger semigroups_第1页
schrodinger semigroups_第2页
schrodinger semigroups_第3页
schrodinger semigroups_第4页
schrodinger semigroups_第5页
资源描述:

《schrodinger semigroups》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、BULLETIN(NewSeries)OFTHEAMERICANMATHEMATICALSOCIETYVolume7,Number3,November1982SCHRÖDINGERSEMIGROUPSBYBARRYSIMONABSTRACT.LetH=-L+VbeageneralSchrödingeroperatoronR"(v~>1),whereAistheLaplacedifferentialoperatorandVisapotentialfunctiononwhichweassumeminimalhypothesesofgrowt

2、handregularity,andinparticularallowVwhichareunboundedbelow.Wegiveageneralsurveyofthepropertiesofe~tH,t>0,andrelatedmappingsgivenintermsofsolutionsofinitialvalueproblemsforthedifferentialequationdu/dt+Hu=0.AmongthesubjectstreatedareL^-propertiesofthesemaps,ex•istenceofcont

3、inuousintegralkernelsforthem,andregularitypropertiesofeigenfunctions,includingHarnack'sinequality.CONTENTSA.IntroductionAl.OverviewA2.TheclassKvA3.LiteratureonlargerclassesB.L^-propertiesBI.L^-smoothingofsemigroupsB2.SobolevestimatesB3.ContinuityandderivativeestimatesB4.L

4、ocalizationB5.GrowthofL^-semigroupnormsast->ooB6.WeightedL2-spacesB7.Integralkernels:GeneralpotentialsB8.Integralkernels:SomespecialoperatorsforsomespecialpotentialsB9.TraceidealpropertiesBIO.ContinuityinVBl1.HypercontractivesemigroupsandallthatB12.Someremarksonthecasewhe

5、nHisunboundedbelowB13.ThemagneticcaseC.EigenfunctionsCI.Harnack'sinequalityandsubsolutionestimatesC2.Localestimatesonv

6、ry81-02,35-02;Secondary47F05,35P05.©1982AmericanMathematicalSociety0273-0979/82/0000-0350/121.00447448BARRYSIMONC6.ThelocalspectraldensityanditsclassicallimitC7.TheintegrateddensityofstatesC8.Allegretto-PiepenbrinktheoryC9.UniquecontinuationA.INTRODUCTIONAl.Overview.ByaSc

7、hrôdingeroperator,wemeanapartialdifferentialoperatoronR"oftheform(Al)H=H0+V;i/0=-iA;V=V(x)whereAisthe^-dimensionalLaplaceoperatorA=2vJ=ld2/dxf(thereasonfortheconvention-^Aratherthan-Awillbecomeclearlater).ThenamecomesfromtheformofSchrödinger'sequationwhich,inunitswithh=m=

8、1reads(A2)idxp/dt=Hxp.HisthustheHamiltonianoperatorofanonrelativisticparticle;H0isthekineticener

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。