欢迎来到天天文库
浏览记录
ID:39676452
大小:2.97 MB
页数:4页
时间:2019-07-09
《板架结构复杂屈曲问题_郭延松》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、第22卷增刊1计算机辅助工程Vol.22Suppl.12013年5月ComputerAidedEngineeringMay2013文章编号:1006-0871(2013)S1-0387-04板架结构复杂屈曲问题郭延松,单中阳(上海外高桥造船有限公司,上海200137)摘要:利用Patran和MSCNastran分析板的屈曲问题.明确利用有限元对板屈曲计算的方法,了解板架结构的长宽比和厚度对板架屈曲能力的影响程度.根据矩形板的中性平衡方程推导出板双轴向受压的临界压力公式,并利用有限元方法对其进行校核.关键词:板架;屈曲;有限元中图分类号:U663.8文献标志码:B
2、ComplexbucklingproblemsongrillagestructureGUOYansong,SHANZhongyang(ShanghaiWaigaoqiaoShipbuildingCo.,Ltd.,Shanghai200137,China)Abstract:TheplatebucklingisanalyzedbyPatranandMSCNastran.Thebucklingcalculationmethodbyfiniteelementisdetermined,andtheeffectoftheaspectratioandthicknessofpl
3、ateongrillagestructurebucklingperformanceisobtained.Thecriticalcompressivestressformulaforplatewhichafforded4-sidescompressivestressesisdeducedandverifiedbyfiniteelementmethod.Keywords:grillage;buckling;finiteelement的屈曲、疲劳问题.本文针对板架的屈曲问题,寻找0引言板架屈曲的规律,分析板架复杂屈曲的特性,对更好随着时代的发展和科学的进步,船舶行业也
4、在地研究船体屈曲问题具有一定意义.不断改革创新,各种新船型和新技术不断涌现.随着1利用有限元对简单板架分析航运事业的发展和要求,船舶不断向巨型化、多功能化发展.近几年,由于经济危机的影响,造船行业的船体板架的受力和边界条件都比较复杂,因此,发展受到很大冲击,对造船行业的生存和发展是一对船体板架屈曲能力的准确评估比较困难.在散货个巨大的考验.因此,必须努力提高船舶设计水平,船和油船的设计规范中,对船体结构板架屈曲校核降低造船成本.也有不同的方法,每种分析方法都进行一定程度的一艘船舶的强度分析主要考虑屈服、屈曲和疲理想化,具有各自的优缺点.劳等3个方面,其中,屈曲、
5、疲劳是船舶较难满足的本文利用有限元方法对板架的屈曲进行简单分2个方面.其原因主要是:(1)由于船体不断巨型化,析,了解模型范围和边界约束的不同对板架屈曲能其受力更加复杂;(2)为降低造船成本,降低空船质力的影响.所取模型为底边舱斜板板架结构,见图量,高强度钢的使用比例不断增加,使得船体屈曲、1,板格净厚度为13mm,长为2730mm,宽为疲劳的问题更加突出.因此,很有必要研究分析船体800mm.收稿日期:2013-05-04作者简介:郭延松(1986—),男,山东济宁人,助理工程师,硕士,研究方向为船体结构设计,(E-mail)guo.yansong163@16
6、3.comhttp://www.chinacae.cn388计算机辅助工程2013年有限元模型采用右手笛卡尔坐标系统,坐标x和y在板格平面内,其中,x方向为长边方向,z方向坐标垂直于x和y轴所在平面.利用Patran进行建5模,用壳单元创建板,取弹性模量E=2.1×102N/mm和μ=0.3.假设板仅长边受压且四边为简支,有限元模型的边界条件和计算结果分别见图2图1底边舱斜板板架结构示意Fig.1Platestructuralofhopper和3.(a)σcr=61.64(b)σcr=80.730图2板架的屈曲Fig.2Bucklingofplate[1]单向受
7、压板的临界压力22πDb1aσcr=2(m+)(1)btamb(a)σcr=58.790将板的几何参数代入式(1),求得最小临界压力σcr=57.912,因此,对于板在弹性范围内的简单屈曲,其模型大小和边界条件取图3(b)最合理.2四边自由支持板双轴向受压板的解(b)σcr=58.905图3板的屈曲矩形板在受到中面压力或剪力时,中性平衡微Fig.3Bucklingofpanel[2]分方程为242222ωωωωωωD(4+222+4)+Tx2+Ty2-2Txy=0(2)xxyyxyxx对于双轴向受压的板,其在x=0和x=a处受均匀级数
8、为压力σx,在y=0和y
此文档下载收益归作者所有