资源描述:
《Riemann Surfaces By Way of Analytic Geometry英文学习材料》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、RiemannSurfacesByWayofAnalyticGeometryDrorVarolinPrefaceThepresentbookarosefromtheneedtobridgewhatIperceivedasarathersubstantialgapbetweenwhatgraduatestudentsatStonyBrookknowaftertheyhavepassedtheirqualifyingexams,andhigherdimen-sionalcomplexanalyticgeometryinitspres
2、entstate.Atpresent,thegenericpost-qualstudentatStonyBrookisrelativelywell-preparedinalgebraictopologyanddifferentialgeometry,butfarfromsoinrealandcomplexanalysis,orpartialdifferentialequations.Fortunately,theamountofrealanalysisneededintheapproachtoRiemannsurfacespre
3、sentedinthisbookisratherminimal.ThedeepestresultsneededaretheHahn-BanachTheoremandtheSpectralTheoremforcompact,self-adjointoperators(andthelatterisnotusedinafundamentalway).Coursesinpartialdifferentialequationsmayoftenpointindirectionsthattypicallydonotleadtocom-plex
4、geometry,eveninsofarastheL2-methodsoriginatedbyBochnerandKodairainthecompactsettingandbyAndreottiandVesentinni,Hormander,Kohn,andMorreyingeneral,andlaterdevelopedbyBombieri,¨Catlin,Demailly,Siu,Skoda,andmanyothers.Amazingly,evencoursesincomplexanalysisdonottypicallye
5、mphasizethepointsmostimportantinthestudyofRiemannsurfaces,focusinginsteadonissuesofminimalregularityforsolvingtheCauchy-Riemannequations.OneexceptionistheRiemannMappingTheorem,oneproofofwhichisrathersimilartotheproofoftheUniformizationTheoremwegiveinChapter10.Inthisb
6、ook,theRiemannMappingTheorem,andanyotherformofclassification,takeabackseatwhilethedriversareresultsbasedontechnique,andespeciallytheapplicationsofsolvingthe@(andsometimes@@)equation.Wepresentasmanymethodsaspossibleforsolvingtheseequations,introducinganddis-cussingGr
7、een’sFunctionsandRunge-typeapproximationtheoremsforthispurpose,andgivingaproofoftheHodgeTheoremusingbasicHilbertandSobolevspacetheory.PerhapsthecenterpieceisHormander’s¨Theoremonsolutionof@withL2estimates.TheProofofHormander’sTheoreminonecomplexdimension¨simplifiesgr
8、eatly,becauseacertainboundaryconditionthatarisesinthefunctionalanalyticformulationofthe@-problemonHilbertspacesisaDirichletboundar