Identification Environment and RobustForecasting for Nonlinear Time Series 识别环境与鲁棒性 非线性时间序列的预测

Identification Environment and RobustForecasting for Nonlinear Time Series 识别环境与鲁棒性 非线性时间序列的预测

ID:39078089

大小:891.68 KB

页数:17页

时间:2019-06-24

Identification Environment and RobustForecasting for Nonlinear Time Series 识别环境与鲁棒性 非线性时间序列的预测_第1页
Identification Environment and RobustForecasting for Nonlinear Time Series 识别环境与鲁棒性 非线性时间序列的预测_第2页
Identification Environment and RobustForecasting for Nonlinear Time Series 识别环境与鲁棒性 非线性时间序列的预测_第3页
Identification Environment and RobustForecasting for Nonlinear Time Series 识别环境与鲁棒性 非线性时间序列的预测_第4页
Identification Environment and RobustForecasting for Nonlinear Time Series 识别环境与鲁棒性 非线性时间序列的预测_第5页
资源描述:

《Identification Environment and RobustForecasting for Nonlinear Time Series 识别环境与鲁棒性 非线性时间序列的预测》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、ComputationalEconomics7:37-53,199491994KluwerAcademicPublishers.PrintedintheNetherlands.IdentificationEnvironmentandRobustForecastingforNonlinearTimeSeriesBERLINWUDepartmentofMathematicalSciences,NationalChengchiUniversity,Taiwan(Received:June1992)Abslract.Inthispaper,themet

2、hodsoftimeseriesfornonlinearityarebrieflysurveyed,withparticularattentionpaidtoanewtestdesignbasedonaneuralnetworkspecification.Theproposedintegratedexpertsystemcontainstwomaincomponents:anidentificationenvironmentandarobustforecastingdesign.Theidentificationenvironmentcanbev

3、iewedasaintegrateddynamicdesigninwhichcognitivecapabilitiesariseasadirectconsequenceoftheirself-organizationalproperties.Theintegratedframeworkusedfordiscussingthesimilaritiesanddifferencesinthenonlineartimeseriesbehaviorispresented.Moreover,itsperformanceinpredictionprovesto

4、besuperiorthantheformerwork.Fortheinvestigationofrobustforecasting,weperformasimulationstudytodemonstratetheapplicabilityandtheforecastingperformance.Keywords,nonlineartimeseries,bilinear,Lagrangemultipliertest,neuralnetwork,forecasting,robust.1.IntroductionTheanalysisintimes

5、eriesmodelshasbeenconcernedwithprocesseswhicharestationary.Testsforunitrootsintimeseriesdatahavebeenthesubjectofattentionineconometricsaswellaswithstatisticiansinthelasttwodecades.Muchoftheresearchhasconcentratedonthedistributiontheorythatisnecessarytodevelopthesetestsandthea

6、nalysisofthepowerofvarioustestsunderdifferentalternativehypotheses.However,inamajorityofeconomicsapplica-tionstheneedofanonlineartes~tisaprioriratherthanunitrootstestfornonstationarity.AsthepapersbyTsay(1991),Granger(199t),andGooijerandKumar(1992)indicate,theinterestinapplyin

7、gnonlineartimeseriesmodelshasconsiderablyincreasedrecently.Therealsoseemstobestrongbeliefamongeconomiststhatrelationshipsbetweeneconomicvariablesarenonlinear;pro-ductionmodelbeinganexample.Specifically,givenparametricrelationship,suchastheCobb-DouglasorCESproductionmodels,sta

8、ndardeconometricstech-niquesprovidewaysofestimationoftheparametersas

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。