欢迎来到天天文库
浏览记录
ID:38945948
大小:459.51 KB
页数:53页
时间:2019-06-21
《《常用逻辑用语复习》》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、常用逻辑用语总复习金维江知识网络常用逻辑用语命题及其关系简单的逻辑联结词全称量词与存在量词四种命题充分条件与必要条件量词全称量词存在量词含有一个量词的否定或且非或并集交集补集运算命题的形式:“若P,则q”也可写成“如果P,那么q”的形式也可写成“只要P,就有q”的形式通常,我们把这种形式的命题中的P叫做命题的条件,q叫做结论.记做:用语言、符号或式子表达的,可以判断真假的陈述句称为命题.1.1.1命题其中判断为真的语句称为真命题,判断为假的语句称为假命题.一个符号条件P的否定,记作“P”。读作“非P”。若p则q逆否命题:原命题:逆命题:否命题:若q则p若p则q若q
2、则p二、四种命题结论1:要写出一个命题的另外三个命题关键是分清命题的题设和结论(即把原命题写成“若P则Q”的形式)注意:三种命题中最难写的是否命题。结论2:(1)“或”的否定为“且”,(2)“且”的否定为“或”,(3)“都”的否定为“不都”。三、四种命题之间的关系原命题若p则q逆命题若q则p否命题若﹁p则﹁q逆否命题若﹁q则﹁p互逆互否互否互逆互为逆否(2)若其逆命题为真,则其否命题一定为真。但其原命题、逆否命题不一定为真。(1)原命题与逆否命题同真假。(2)原命题的逆命题与否命题同真假。(1)原命题为真,则其逆否命题一定为真。但其逆命题、否命题不一定为真。四、命题真假
3、性判断结论:反证法的一般步骤:假设命题的结论不成立,即假设结论的反面成立;从这个假设出发,经过推理论证,得出矛盾;(3)由矛盾判定假设不正确,从而肯定命题的结论正确。反设归谬结论反证法充要条件如果命题“若p则q”为假,则记作pq。如果命题“若p则q”为真,则记作pq(或qp)。定义:如果,则说p是q的充分条件,q是p的必要条件pq,相当于Pq,即Pq或P、q从集合角度理解:①认清条件和结论。②考察pq和qp的真假。①可先简化命题。③将命题转化为等价的逆否命题后再判断。②否定一个命题只要举出一个反例即可。6判别步骤:7判别技巧:判别充要条件问题的充要条件定义:称:p是q的
4、充分必要条件,简称充要条件显然,如果p是q的充要条件,那么q也是p的充要条件p与q互为充要条件(也可以说成”p与q等价”)1、充分且必要条件2、充分非必要条件3、必要非充分条件4、既不充分也不必要条件各种条件的可能情况2、从逻辑推理关系看充分条件、必要条件:充分非必要条件必要非充分条件1)AB且BA,则A是B的2)若AB且BA,则A是B的3)若AB且BA,则A是B的既不充分也不必要条件充分且必要条件4)AB且BA,则A是B的3、从集合与集合的关系看充分条件、必要条件3)若AB且BA,则甲是乙的2)若AB且BA,则甲是乙的1)若AB且BA,则甲是乙的充分非必要条件必要非充分
5、条件既不充分也不必要条件一般情况下若条件甲为x∈A,条件乙为x∈B4)若A=B,则甲是乙的充分且必要条件。1.在判断条件时,要特别注意的是它们能否互相推出,切不可不加判断以单向推出代替双向推出.注意点2.搞清①A是B的充分条件与A是B的充分非必要条件之间的区别与联系;②A是B的必要条件与A是B的必要非充分条件之间的区别与联系3、注意几种方法的灵活使用:定义法、集合法、逆否命题法2:填写“充分不必要,必要不充分,充要,既不充分又不必要。1)sinA>sinB是A>B的___________条件。2)在ΔABC中,sinA>sinB是A>B的________条件。既不充分又不
6、必要充要条件注、定义法(图形分析)3、a>b成立的充分不必要的条件是( )A.ac>bcB.a/c>b/cC.a+c>b+cD.ac2>bc2D4.关于x的不等式:|x|+|x-1|>m的解集为R的充要条件是()(A)m<0(B)m≤0(C)m<1(D)m≤1C练习2、1、设集合M={x
7、x>2},N={x
8、x<3},那么”x∈M或x∈N”是“x∈M∩N”的A.充要条件B必要不充分条件C充分不必要D不充分不必要B注、集合法2、a∈R,
9、a
10、<3成立的一个必要不充分条件是A.a<3B.
11、a
12、<2C.a2<9D.013、______________.练习3、充分不必要条件注、等价法(转化为逆否命题)2:若┐A是┐B的充要条件,┐C是┐B的充 要条件,则A为C的()条件A.充要B必要不充分C充分不必要D不充分不必要A集合法与转化法1.已知P:|2x-3|>1;q:1/(x2+x-6)>0,则┐p是┐q的()(A)充分不必要条件(B)必要不充分条件(C)充要条件(D)既不充分也不必要条件2、已知p:14、x+115、>2,q:x2<5x-6,则非p是非q的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既非充分又非必要条件练习4、AA我们再来看
13、______________.练习3、充分不必要条件注、等价法(转化为逆否命题)2:若┐A是┐B的充要条件,┐C是┐B的充 要条件,则A为C的()条件A.充要B必要不充分C充分不必要D不充分不必要A集合法与转化法1.已知P:|2x-3|>1;q:1/(x2+x-6)>0,则┐p是┐q的()(A)充分不必要条件(B)必要不充分条件(C)充要条件(D)既不充分也不必要条件2、已知p:
14、x+1
15、>2,q:x2<5x-6,则非p是非q的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既非充分又非必要条件练习4、AA我们再来看
此文档下载收益归作者所有