从数学真理观的变化看真理的相对性与绝对性

从数学真理观的变化看真理的相对性与绝对性

ID:38342954

大小:19.15 KB

页数:3页

时间:2019-06-10

从数学真理观的变化看真理的相对性与绝对性_第1页
从数学真理观的变化看真理的相对性与绝对性_第2页
从数学真理观的变化看真理的相对性与绝对性_第3页
资源描述:

《从数学真理观的变化看真理的相对性与绝对性》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、从数学真理观的变化看真理的相对性与绝对性数学真理作为数学认识论的核心问题,既是关于数学知识真实性、客观性、可靠性、可信性的一个重要指标,也是衡量人类科学发展水平的一个基本尺度。文艺复兴以来,随着近代数学的诞生,人们对数学真理的理解达到了新的高度,逐步形成了现代性的数学认识,其主要标志就是以形而上学和柏拉图主义为基调的绝对主义和基础主义的真理观。随着后现代思潮的崛起,现代性的科学观念受到强烈的冲击。在后现代哲学的语境中,人类以往创造的所有知识的合法性都受到了质疑。后现代主义者解构现代性的气势不仅有些咄咄逼人,而且其对现代性的批判的确也不乏深刻性和合理性。当后现代主义对普遍

2、真理、宏大叙事、逻各斯中心主义、本体论和本质主义提出质疑并予以解构之后,作为现代性和科学真理的一个典范——数学,将如何应对后现代的挑战并对其真理性重新定位?这是一个十分重要的科学认识论问题。可以看到,数学并不具有终极的、绝对的、中心化的、惟一不变的认识论基础,数学的真理性具有鲜明的社会、历史和文化特征。  一、数学真理从惟一性、终极性向多样性、谱系性的转向现代性的数学真理观念源自于古希腊毕达哥拉斯—柏拉图主义的数学传统,到17、18世纪,其基本思想趋于成熟。从柏拉图到康德,整个西方数学的文化精神都是以毕达哥拉斯—柏拉图主义的数学传统为基准的。其基本特点是对数学真理的惟一

3、性、终极性、绝对性、整体性、永恒性的信仰。康德虽然把纯粹直观作为数学知识判断的一个要素,但这种直观却是先天的。在康德看来,数学是先天的综合判断,是形而上学的典范。这种现代性的数学哲学观作为西方理性主义的一个重要源泉,对西方科学主义思想以及后来的逻辑实证主义科学哲学思潮的形成都具有深刻的影响。19世纪以来,数学的知识进步发生了持续、内在的变革。作为这一变革的一个重要的认识论突破,开始出现一系列解构现代性数学观念的思想萌芽。首先是非欧几何的诞生和代数学的抽象化。非欧几何的诞生,是数学观从现代性向后现代性转向的一个重要标志。非欧几何瓦解了长期以来人们对数学公理“不证自明”和免

4、予质疑的认识定位。数学公理的选择是一种基于认识必然性规律之上的合乎推理程式的理性与历史的共同抉择。这种抉择不再是惟一确定的而是多样变化的,不再是绝对意义上的而是有了相对的意义。非欧几何所揭示出的新的数学真理品质表明,数学真理并不是像康德所假设的那样,是一种先验的直觉和综合判断。然而,尽管非欧几何的产生初步改变了人们对数学真理具有惟一性的信念,并初步揭示出现代性数学真理观的内在认识论缺陷,但随着非欧几何的相容性问题的解决,在当时的大多数数学家心中,存在着一个绝对的、终极的和完全确定的数学基础仍是不言而喻的。集合论诞生后,一度被视为建立终极性数学基础的法宝。但随着康托悖论、

5、罗素悖论等一系列数学与逻辑学悖论的不期而至,数学出现了前所未有的基础危机。面对危机,数学界和数理逻辑界的领袖人物雄心勃勃地提出了各自宏伟的数学奠基工程计划。无论是以罗素、怀特海为代表的逻辑主义,还是以希尔伯特为开创者的形式主义,都企图在完全逻辑化、充分形式化和彻底公理化的基础上重新构筑数学真理,以扶正并稳固已经倾斜的整个经典理性主义大厦。逻辑主义和形式主义都相信,数学知识是由无可非议、绝对确定、绝对可靠的为数不多的逻辑的或数学的概念、公理经过严格的逻辑或数学方法推演出来的。他们确信,所有的数学定理都可以从这种完美无缺、固定不变的基础中得到,因而所有的数学真理便可以通过奠

6、定一劳永逸和完全可靠的数学基础而获得。与逻辑主义、形式主义和逻辑实证主义建立普遍的、总体性的数学的意愿相反,20世纪30年代初,奥地利年轻的数理逻辑专家哥德尔发表了在数学、数理逻辑乃至整个科学界都具有划时代意义的不完全性定理。哥德尔研究形式公理化体系相容性问题的本意是为了证明希尔伯特纲领,即完成对包括算术系统在内的形式化体系的相容性证明,但最终得到的结果却完全出乎人们的意料。哥德尔定理表明,在任一形式体系中都有不可判定命题存在。由于任一形式体系都无法在自身范围内完成自我解释和说明,所以逻辑主义和形式主义的基于逻辑化、形式化、封闭性和完备性的数学基础主义计划就是无法实现的

7、。数学命题的正确性不仅要受到数学概念是如何界定的、数学公理是如何选择的、数学的论证方式是如何取舍的等多种因素的影响和制约,而且有时候在体系内还是不可判定的。数学的定理不是从毋庸置疑的、绝对无误的前提下,通过绝对可靠的推理规则得到的不容怀疑的绝对真理。数学命题的正确性不仅依赖于可能变换或更替的前提和假设,而且依赖于推理规则的选择和限定。换句话说,数学并没有形而上学意义上的严格性。数学命题、理论的真理性就取决于数学共同体搭建的理论平台和数学语境,因此,数学知识就被赋予了强烈的社会文化性。从19世纪中叶非欧几何的诞生到20世纪初哥德尔定理的产生

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。