线性代数历年考研真题

线性代数历年考研真题

ID:38277508

大小:77.13 KB

页数:6页

时间:2019-06-02

线性代数历年考研真题_第1页
线性代数历年考研真题_第2页
线性代数历年考研真题_第3页
线性代数历年考研真题_第4页
线性代数历年考研真题_第5页
资源描述:

《线性代数历年考研真题》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、线线线性性性代代代数数数历历历年年年考考考研研研真真真题题题01-11数数数学学学三三三统计与数理学院王继强一一一.填填填空空空题题题k1111k111.【01数三/四】设矩阵A=,且秩(A)=3,则k=.11k1111k12−2T2.【02数三】设三阶矩阵A=212,三维列向量=(a;1;1),且A 与线性相关,304则a=.3.【03数三/四】设n维向量=(a;0;···;0;a;)T,矩阵A=E−T,B=E+1T,其a中a<0,B为A的逆矩阵,则a=.4.

2、【04数三】二次型f(x1;x2;x3)=(x1+x2)2+(x2−x3)2+(x3+x1)2的秩为.5.【05数三/四】设向量组(2;1;1;1);(2;1;a;a);(3;2;1;a);(4;3;2;1)线性相关,且a̸=1,则a=.216.【06数一/二/三/四】设矩阵A=,矩阵B满足BA=B+2E,则

3、B

4、=.−12010000107.【07数一/二/三/四】设矩阵A=,则A3的秩为.000100008.【08数三/四】设三阶矩阵A的特征值互不相同,且

5、A

6、=0,则

7、A的秩为.9.【09数三】设向量=(1;1;1)T,=(1;0;k)T,且矩阵T相似于diag(3;0;0),则k=.10.【10数二/三】设A;B为三阶矩阵,且

8、A

9、=3,

10、B

11、=2,

12、A1+B

13、=2,则

14、A+B1

15、=.11.【11数三】设二次型f(x1;x2;x3)=xTAx的秩为1,且A的行元素之和为3,则f在正交变换x=Qy下的标准形为.二二二.选选选择择择题题题1a11a12a13a14a14a13a12a11a21a22a23a24a24a23a22a211.【01

16、数三/四】设矩阵A=,B=,P1=a31a32a33a34a34a33a32a31a41a42a43a44a44a43a42a410001100001000010,P2=,其中A可逆,则B1=().0010010000010001(A)A1P1P2(B)P1A1P2(C)P1P2A1(D)P2A1P1A2.【01数三】设A是n阶矩阵,是n为列向量,且秩=秩(A),则().T0(A)Ax=有无穷多解(B

17、)Ax=有唯一解AxAx(C)=0仅有零解(D)=0有非零解T0yT0y3.【02数三】设A是m×n矩阵,B是n×m矩阵,则线性方程组ABx=0().(A)当m>n时,仅有零解(B)当m>n时,有非零解(C)当n>m时,仅有零解(D)当n>m时,有非零解4.【02数三】设A是n阶实对称矩阵,P是n阶可逆矩阵,n维列向量是A的属于特征值的特征向量,则矩阵(P1AP)T的属于特征值的特征向量是().(A)P1(B)PT(C)P (D)(P1)Tabb5.【03数三

18、】设三阶矩阵A=bab,A的伴随矩阵的秩等于1,则().bba(A)a=b或a+2b=0(B)a=b或a+2b̸=0(C)a̸=b且a+2b=0(D)a̸=b且a+2b̸=06.【03数三】设1; 2;:::; s为n维向量,则下列结论中不正确的是().(A)若对于任意一组不全为0的数k1;k2;:::;ks,都有k11+k22+:::+kss̸=0,则1; 2;:::; s线性无关(B)若1; 2;:::; s线性相关,则若对于任意一组不全为0的数k1;k2;:::;ks,都有k11+k22+:::+k

19、ss=0(C)1; 2;:::; s线性无关的充要条件是其秩为s(D)1; 2;:::; s线性无关的充要条件是其中任意两个向量都线性无关7.【04数三/四】设n阶矩阵A与B等价,则().(A)当

20、A

21、=a̸=0时,

22、B

23、=a(B)当

24、A

25、=a̸=0时,

26、B

27、=−a2(C)当

28、A

29、̸=0时,

30、B

31、=0(D)当

32、A

33、=0时,

34、B

35、=08.【04数三】设n阶矩阵A的伴随矩阵A̸=O,1;2;3;4是非齐次线性方程组Ax=b的互不相同的解,则导出组Ax=0的基础解系().(A)不存在(B)仅含一个非零解向量(

36、C)含有两个线性无关的解向量(D)含有三个线性无关的解向量9.【05数一/二/三】设1;2是矩阵A的两个不同的特征值,对应的特征向量分别为1; 2,则1;A(1+2)线性无关的充要条件是().(A)1̸=0(B)2̸=0(C)1=0(D)2=010.【05数三】设矩阵A=(aij)33满足A=AT,且a11;a12;a13为三个相等的正数,则a11为().

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。