欢迎来到天天文库
浏览记录
ID:38252916
大小:339.86 KB
页数:13页
时间:2019-06-07
《中考与特殊四边形有关地填空压轴题》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、实用标准文案与特殊四边形有关的填空压轴题2014年与特殊四边形(正多边形)有关的填空压轴题,题目展示涉及:折叠问题;旋转问题;三角形全等问题;平面展开﹣最短路径问题;动点问题的函数图象问题.知识点涉及:全等三角形的判定与性质;正方形的判定和性质;解直角三角形,勾股定理,正多边形性质;锐角三角函数.数学思想涉及:分类讨论;数形结合;方程思想.现选取部分省市的2014年中考题展示.【题1】(2014.年河南省第题)如图矩形ABCD中,AD=5,AB=7,点E为DC上一个动点,把△ADE沿AE折叠,当点D的对应点D′落在∠ABC的角平分线上时,DE的长
2、为 .【考点】:翻折变换(折叠问题).【分析】:连接BD′,过D′作MN⊥AB,交AB于点M,CD于点N,作D′P⊥BC交BC于点P,先利用勾股定理求出MD′,再分两种情况利用勾股定理求出DE.【解答】:解:如图,连接BD′,过D′作MN⊥AB,交AB于点M,CD于点N,作D′P⊥BC交BC于点P,∵点D的对应点D′落在∠ABC的角平分线上,∴MD′=PD′,设MD′=x,则PD′=BM=x,∴AM=AB﹣BM=7﹣x,又折叠图形可得AD=AD′=5,∴x2+(7﹣x)2=25,解得x=3或4,即MD′=3或4.在RT△END′中,设ED′=a
3、,①当MD′=3时,D′E=5﹣3=2,EN=7﹣CN﹣DE=7﹣3﹣a=4﹣a,∴a2=22+(4﹣a)2,解得a=,即DE=,②当MD′=4时,D′E=5﹣4=1,EN=7﹣CN﹣DE=7﹣4﹣a=3﹣a,∴a2=12+(3﹣a)2,解得a=,即DE=.故答案为:或.文档大全实用标准文案【点评】:本题主要考查了折叠问题,解题的关键是明确掌握折叠以后有哪些线段是对应相等的. 【题2】(2014年四川省绵阳市第17题)如图,在正方形ABCD中,E、F分别是边BC、CD上的点,∠EAF=45°,△ECF的周长为4,则正方形ABCD的边长为 .【考
4、点】:旋转的性质;全等三角形的判定与性质;勾股定理;正方形的性质.【分析】:根据旋转的性质得出∠EAF′=45°,进而得出△FAE≌△EAF′,即可得出EF+EC+FC=FC+CE+EF′=FC+BC+BF′=4,得出正方形边长即可.【解答】:解:将△DAF绕点A顺时针旋转90度到△BAF′位置,由题意可得出:△DAF≌△BAF′,∴DF=BF′,∠DAF=∠BAF′,∴∠EAF′=45°,在△FAE和△EAF′中,∴△FAE≌△EAF′(SAS),∴EF=EF′,∵△ECF的周长为4,∴EF+EC+FC=FC+CE+EF′=FC+BC+BF′=
5、4,∴2BC=4,∴BC=2.故答案为:2.【点评】:此题主要考查了旋转的性质以及全等三角形的判定与性质等知识,得出△FAE≌△EAF′是解题关键.【题3】(2014年湖北随州第16题)如图1,正方形纸片ABCD的边长为2,翻折∠B、∠D,使两个直角的顶点重合于对角线BD上一点P、EF、GH分别是折痕(如图2).设AE=x(0<x<2),给出下列判断:①当x=1时,点P是正方形ABCD的中心;文档大全实用标准文案②当x=时,EF+GH>AC;③当0<x<2时,六边形AEFCHG面积的最大值是;④当0<x<2时,六边形AEFCHG周长的值不变.其中
6、正确的是 (写出所有正确判断的序号).【考点】:翻折变换(折叠问题);正方形的性质.【分析】:(1)由正方形纸片ABCD,翻折∠B、∠D,使两个直角的顶点重合于对角线BD上一点P,得出△BEF和△三DGH是等腰直角三角形,所以当AE=1时,重合点P是BD的中点,即点P是正方形ABCD的中心;(2)由△BEF∽△BAC,得出EF=AC,同理得出GH=AC,从而得出结论.(3)由六边形AEFCHG面积=正方形ABCD的面积﹣△EBF的面积﹣△GDH的面积.得出函数关系式,进而求出最大值.(4)六边形AEFCHG周长=AE+EF+FC+CH++HG+
7、AG=(AE+CF)+(FC+AG)+(EF+GH)求解.【解答】:解:(1)正方形纸片ABCD,翻折∠B、∠D,使两个直角的顶点重合于对角线BD上一点P,∴△BEF和△三DGH是等腰直角三角形,∴当AE=1时,重合点P是BD的中点,∴点P是正方形ABCD的中心;故①结论正确,(2)正方形纸片ABCD,翻折∠B、∠D,使两个直角的顶点重合于对角线BD上一点P,∴△BEF∽△BAC,∵x=,∴BE=2﹣=,∴=,即=,∴EF=AC,同理,GH=AC,∴EF+GH=AC,故②结论错误,(3)六边形AEFCHG面积=正方形ABCD的面积﹣△EBF的面积
8、﹣△GDH的面积.∵AE=x,∴六边形AEFCHG面积=22﹣BE•BF﹣GD•HD=4﹣×(2﹣x)•(2﹣x)﹣x•x=﹣x2+2x
此文档下载收益归作者所有