全国各地中考数学真题分类解析汇编与特殊四边形有关的填空压轴题

全国各地中考数学真题分类解析汇编与特殊四边形有关的填空压轴题

ID:23170384

大小:351.50 KB

页数:16页

时间:2018-11-05

全国各地中考数学真题分类解析汇编与特殊四边形有关的填空压轴题_第1页
全国各地中考数学真题分类解析汇编与特殊四边形有关的填空压轴题_第2页
全国各地中考数学真题分类解析汇编与特殊四边形有关的填空压轴题_第3页
全国各地中考数学真题分类解析汇编与特殊四边形有关的填空压轴题_第4页
全国各地中考数学真题分类解析汇编与特殊四边形有关的填空压轴题_第5页
资源描述:

《全国各地中考数学真题分类解析汇编与特殊四边形有关的填空压轴题》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、备课大师:免费备课第一站!与特殊四边形有关的填空压轴题2014年与特殊四边形(正多边形)有关的填空压轴题,题目展示涉及:折叠问题;旋转问题;三角形全等问题;平面展开﹣最短路径问题;动点问题的函数图象问题.知识点涉及:全等三角形的判定与性质;正方形的判定和性质;解直角三角形,勾股定理,正多边形性质;锐角三角函数.数学思想涉及:分类讨论;数形结合;方程思想.现选取部分省市的2014年中考题展示,以飨读者.【题1】(2014.年河南省第题)如图矩形ABCD中,AD=5,AB=7,点E为DC上一个动点,把△ADE沿AE折叠,当点D的对应点D′落在∠ABC的角平分线上时,DE的长为  .【考

2、点】:翻折变换(折叠问题).【分析】:连接BD′,过D′作MN⊥AB,交AB于点M,CD于点N,作D′P⊥BC交BC于点P,先利用勾股定理求出MD′,再分两种情况利用勾股定理求出DE.【解答】:解:如图,连接BD′,过D′作MN⊥AB,交AB于点M,CD于点N,作D′P⊥BC交BC于点P,∵点D的对应点D′落在∠ABC的角平分线上,∴MD′=PD′,设MD′=x,则PD′=BM=x,∴AM=AB﹣BM=7﹣x,又折叠图形可得AD=AD′=5,∴x2+(7﹣x)2=25,解得x=3或4,即MD′=3或4.http://www.xiexingcun.com/http://www.eyw

3、edu.net/备课大师:免费备课第一站!在RT△END′中,设ED′=a,①当MD′=3时,D′E=5﹣3=2,EN=7﹣CN﹣DE=7﹣3﹣a=4﹣a,∴a2=22+(4﹣a)2,解得a=,即DE=,②当MD′=4时,D′E=5﹣4=1,EN=7﹣CN﹣DE=7﹣4﹣a=3﹣a,∴a2=12+(3﹣a)2,解得a=,即DE=.故答案为:或.【点评】:本题主要考查了折叠问题,解题的关键是明确掌握折叠以后有哪些线段是对应相等的. 【题2】(2014年四川省绵阳市第17题)如图,在正方形ABCD中,E、F分别是边BC、CD上的点,∠EAF=45°,△ECF的周长为4,则正方形ABCD

4、的边长为  .【考点】:旋转的性质;全等三角形的判定与性质;勾股定理;正方形的性质.【分析】:根据旋转的性质得出∠EAF′=45°,进而得出△FAE≌△EAF′,即可得出EF+EC+FC=FC+CE+EF′=FC+BC+BF′=4,得出正方形边长即可.【解答】:解:将△DAF绕点A顺时针旋转90度到△BAF′位置,由题意可得出:△DAF≌△BAF′,∴DF=BF′,∠DAF=∠BAF′,∴∠EAF′=45°,在△FAE和△EAF′中,∴△FAE≌△EAF′(SAS),∴EF=EF′,∵△ECF的周长为4,http://www.xiexingcun.com/http://www.ey

5、wedu.net/备课大师:免费备课第一站!∴EF+EC+FC=FC+CE+EF′=FC+BC+BF′=4,∴2BC=4,∴BC=2.故答案为:2.【点评】:此题主要考查了旋转的性质以及全等三角形的判定与性质等知识,得出△FAE≌△EAF′是解题关键.【题3】(2014年湖北随州第16题)如图1,正方形纸片ABCD的边长为2,翻折∠B、∠D,使两个直角的顶点重合于对角线BD上一点P、EF、GH分别是折痕(如图2).设AE=x(0<x<2),给出下列判断:①当x=1时,点P是正方形ABCD的中心;②当x=时,EF+GH>AC;③当0<x<2时,六边形AEFCHG面积的最大值是;④当0

6、<x<2时,六边形AEFCHG周长的值不变.其中正确的是  (写出所有正确判断的序号).【考点】:翻折变换(折叠问题);正方形的性质.http://www.xiexingcun.com/http://www.eywedu.net/备课大师:免费备课第一站!【分析】:(1)由正方形纸片ABCD,翻折∠B、∠D,使两个直角的顶点重合于对角线BD上一点P,得出△BEF和△三DGH是等腰直角三角形,所以当AE=1时,重合点P是BD的中点,即点P是正方形ABCD的中心;(2)由△BEF∽△BAC,得出EF=AC,同理得出GH=AC,从而得出结论.(3)由六边形AEFCHG面积=正方形ABCD

7、的面积﹣△EBF的面积﹣△GDH的面积.得出函数关系式,进而求出最大值.(4)六边形AEFCHG周长=AE+EF+FC+CH++HG+AG=(AE+CF)+(FC+AG)+(EF+GH)求解.【解答】:解:(1)正方形纸片ABCD,翻折∠B、∠D,使两个直角的顶点重合于对角线BD上一点P,∴△BEF和△三DGH是等腰直角三角形,∴当AE=1时,重合点P是BD的中点,∴点P是正方形ABCD的中心;故①结论正确,(2)正方形纸片ABCD,翻折∠B、∠D,使两个直角的顶点重

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。