An expert system for detection of breast cancer based on association rules

An expert system for detection of breast cancer based on association rules

ID:38210764

大小:215.01 KB

页数:5页

时间:2019-06-03

An expert system for detection of breast cancer based on association rules_第1页
An expert system for detection of breast cancer based on association rules_第2页
An expert system for detection of breast cancer based on association rules_第3页
An expert system for detection of breast cancer based on association rules_第4页
An expert system for detection of breast cancer based on association rules_第5页
资源描述:

《An expert system for detection of breast cancer based on association rules》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、ExpertSystemswithApplications36(2009)3465–3469ContentslistsavailableatScienceDirectExpertSystemswithApplicationsjournalhomepage:www.elsevier.com/locate/eswaAnexpertsystemfordetectionofbreastcancerbasedonassociationrulesandneuralnetworka,*bMuratKarabatak,M.Cev

2、detInceaFıratUniversity,DepartmentofElectronicsandComputerScience,23119Elazig,TurkeybFıratUniversity,DepartmentofElectric-ElectronicsEngineering,23119Elazig,TurkeyarticleinfoabstractKeywords:Thispaperpresentsanautomaticdiagnosissystemfordetectingbreastcancerb

3、asedonassociationrulesAssociationrules(AR)andneuralnetwork(NN).Inthisstudy,ARisusedforreducingthedimensionofbreastcancerdata-NeuralnetworkbaseandNNisusedforintelligentclassification.TheproposedAR+NNsystemperformanceiscomparedAutomaticdetectionwithNNmodel.Thedi

4、mensionofinputfeaturespaceisreducedfromninetofourbyusingAR.IntestBreastcancerstage,3-foldcrossvalidationmethodwasappliedtotheWisconsinbreastcancerdatabasetoevaluatetheproposedsystemperformances.Thecorrectclassificationrateofproposedsystemis95.6%.Thisresearchde

5、monstratedthattheARcanbeusedforreducingthedimensionoffeaturespaceandproposedAR+NNmodelcanbeusedtoobtainfastautomaticdiagnosticsystemsforotherdiseases.Ó2008ElsevierLtd.Allrightsreserved.1.Introductionbreastcancer(Chouaetal.,2004).Inliterature,radiologistsshowc

6、onsiderablevariationininterpretingamammography(ElmoreDataclassificationprocessusingknowledgeobtainedfrometal.,1994).Fineneedleaspirationcytology(FNAC)isalsowidelyknownhistoricaldatahasbeenoneofthemostintensivelystudiedadoptedinthediagnosisofbreastcancer.But,th

7、eaveragecorrectsubjectsinstatistics,decisionscienceandcomputerscience.IthasidentificationrateofFNACisonly90%.So,itisnecessarytodevelopbeenappliedinproblemsofmedicine,socialsciencemanagementbetteridentificationmethodtorecognizethebreastcancer.Statis-andengineeri

8、ng.Variableproblemssuchasdiseasediagnosis,im-ticaltechniquesandartificialintelligencetechniqueshavebeenagerecognition,andcreditevaluationusingclassificationtech-usedtopredictthebreastcancer

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。