欢迎来到天天文库
浏览记录
ID:38061747
大小:33.00 KB
页数:5页
时间:2019-05-24
《大学高数之微积分》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、大学高数论文姓名:专业学号:自从入学以来数学就一直陪伴着我们,她无处不影响着我们,使我们变得更加睿智,更加理性,指引着智慧的方向,陪伴着我们走过学习和成长的各个阶段。数学是一门给人智慧,使人聪明的科学,在数学的世界中,我们可以探索以前所不知道的秘密,在这个过程中我们变的睿智,变的聪明。由于以前选择了文科,所以到了大学才接受了微积分的知识,也开始了对微积分的探索。现在可以说是略知一二了。一微积分的历史发展微积分学是微分学和积分学的总称。客观世界的一切事物,小至粒子,大至宇宙,始终都在运动和变化着。因此在
2、数学中引入了变量的概念后,就有可能把运动现象用数学来加以描述了。由于函数概念的产生和运用的加深,也由于科学技术发展的需要,一门新的数学分支就继解析几何之后产生了,这就是微积分学。微积分学这门学科在数学发展中的地位是十分重要的,可以说它是继欧氏几何后,全部数学中的最大的一个创造。微积分(Calculus)是研究函数的微分、积分以及有关概念和应用的数学分支。微积分是建立在实数、函数和极限的基础上的。微积分最重要的思想就是用"微元"与"无限逼近",好像一个事物始终在变化你不好研究,但通过微元分割成一小块一小
3、块,那就可以认为是常量处理,最终加起来就行。微积分的产生是数学上的伟大创造。它从生产技术和理论科学的需要中产生,又反过来广泛影响着生产技术和科学的发展。如今,微积分已是广大科学工作者以及技术人员不可缺少的工具。微积分是微分学和积分学的统称,它的萌芽、发生与发展经历了漫长的时期。早在古希腊时期,欧多克斯提出了穷竭法。这是微积分的先驱,而我国庄子的《天下篇》中也有“一尺之锤,日取其半,万世不竭”的极限思想,公元263年,刘徽为《九间算术》作注时提出了“割圆术”,用正多边形来逼近圆周。这是极限论思想的成功运
4、用。在微积分这方面第一个做出贡献的是瑞士数学家欧拉。1736年他首先引进了平面曲线的内在坐标这一概念,即以曲线弧长这以几何量作为曲线上点的坐标,从而开始了曲线的内在几何的研究。十八世纪初,法国数学家蒙日首先把微积分应用到曲线和曲面的研究中去,并于1807年出版了它的《分析在几何学上的应用》一书,这是微分几何最早的一本著作。在这些研究中,可以看到力学、物理学与工业的日益增长的要求是促进微分几何发展的因素。1827年,高斯发表了《关于曲面的一般研究》的著作,这在微分几何的历史上有重大的意义,它的理论奠定了
5、现代形式曲面论的基础。微分几何发展经历了150年之后,高斯抓住了微分几何中最重要的概念和带根本性的内容,建立了曲面的内在几何学。其主要思想是强调了曲面上只依赖于第一基本形式的一些性质,例如曲面上曲面的长度、两条曲线的夹角、曲面上的一区域的面积、测地线、测地线曲率和总曲率等等。他的理论奠定了近代形式曲面论的基础。1872年克莱因在德国埃尔朗根大学作就职演讲时,阐述了《埃尔朗根纲领》,用变换群对已有的几何学进行了分类。在《埃尔朗根纲领》发表后的半个世纪内,它成了几何学的指导原理,推动了几何学的发展,导致了
6、射影微分几何、仿射微分几何、共形微分几何的建立。特别是射影微分几何起始于1878年阿尔方的学位论文,后来1906年起经以威尔辛斯基为代表的美国学派所发展,1916年起又经以富比尼为首的意大利学派所发展。随后,由于黎曼几何的发展和爱因斯坦广义相对论的建立,微分几何在黎曼几何学和广义相对论中的得到了广泛的应用,逐渐在数学中成为独具特色、应用广泛的独立学科。微积分的现代发展现代中在Riemann将Cauchy的积分含义扩展之后,Lebesgue又引进了测度的概念,进一步将Riemann积分的含义扩展。例如著
7、名的Dirichilet函数在Riemann积分下不可积,而在Lebesgue积分下便可积。我国的数学泰斗陈省身先生所研究的微分几何领域,便是利用微积分的理论来研究几何,这门学科对人类认识时间和空间的性质发挥的巨大的作用。并且这门学科至今仍然很活跃。前不久由我国数学家朱熹平、曹怀东完成最后封顶的庞加莱猜想便属于这一领域。数学本身发展的需要和解决问题的需要,仅仅考虑欧式空间中的微积分是不够的。有必要把微积分的演出舞台从欧式空间进一步拓展到一般的微分流形。微积分的发展历史表明了人的认识是从生动的直观开始,
8、进而达到抽象思维,也就是从感性认识到理性认识的过程。人类对客观世界的规律性的认识具有相对性,受到时代的局限。随着人类认识的深入,认识将一步一步地由低级到高级、由不全面到比较全面地发展。人类对自然的探索永远不会有终点。54二微积分的本源1微积分使极限理论更加成熟我们知道微积分的基础是极限论,而牛顿、莱布尼兹的极限观念是十分模糊的,牛顿的瞬和流数,莱布尼兹的dx和dy究竟是什么含义?在他们各自的著述中没有给出明确和一贯的定义,在运用时也显得前后不一。牛顿和莱
此文档下载收益归作者所有