欢迎来到天天文库
浏览记录
ID:37301445
大小:1.04 MB
页数:106页
时间:2019-05-21
《湘教版八年级上册数学教案全套》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、http://www.docin.com/fjndmahttp://www.duk.cn/2001890第一章实数1.1平方根(第1课时)编写时间:年月日执行时间:年月日总序第个教案【教学目标】1、了解平方根的概念,会用根号表示数的平方根。2、了解开方与乘方互为逆运算,会用平方根求某些非负数的平方根。【教学重点难点】了解开方与乘方互为逆运算,能熟练地用平方根求某些非负数的平方根【教学方法】观察、比较、合作、交流、探索.【设计思路】本节课通过问题情景使学生在计算、探索、交流的过程中能感悟到平方根的意义,并且能够知道正负数以及0的平方根的规律。在教学中要让每个学生都参与到活动
2、中去,感受学习的乐趣,提高学习数学的兴趣,教学千万不能在走老路,先告诉规律,然后讲例题,在做练习。【教学过程】(一)创设情景,感悟新知2情景一:在等式x=a中,已知x=-3,你能求a吗?已知a=5,你能x求吗?(二)探索规律,揭示新知问题一:认真观察下面的式子,积极思考,互相讨论:222=4,(-2)=4,121121()=,(-)=,3939220.5=0.25,(-0.5)=0.25.请你举例与上面的式子类同的式子;你得到什么结论?(分小组讨论,老师适当参与给予帮助。)如果一个数的平方等于a,那么这个数叫做的a平方根(squareroot),也称为二次方根。2如果x=
3、a,那么x就叫做a的平方根。【设计说明:所选的题目都具有代表性,学生通过做题后思考讨论交流,能够较好接受平方根的概念】问题二:在下列各括号中能填写适当的数使等式成立吗?如果能够,请填写;如果不能,请说明理由,并与同学交流。222121()=9,()=25,()=,()=;42()2()2()2()2=5,=10,=0,=-4.一个正数的平方根有2个,它们互为相反数。一个正数a的正的平方根,记作“a”,正数a的负的平方根记作“-a”。-1-http://www.docin.com/fjndmahttp://www.duk.cn/2001890这两个平方根合起来记作“±a”,
4、读作“正,负根号a”.【设计说明:通过对具体的数的平方根的讨论交流,使学生自己总结出正数、0、负数的平方根的情况,让学生经历探索规律的过程,加深对规律的理解】问题三:从问题二中,你得到了什么结论?一个正数的平方根有2个,它们互为相反数;0只有1个平方根,它是0本身;负数没有平方根。【设计说明:在讨论的过程中,不同层次的学生可能会遇到不同的困难,我们教师要给与适当的帮助,要给与鼓励】(三)尝试反馈,领悟新知例1求下列各数的平方根:162(-2)25;(2)81(3)15;(4)。分析:1、判断这些数是否都有平方根;2、根据规律各个数的平方根有几个?【设计说明:在处理例题时要
5、让学生充分参与分析,在运算时特别要注意一个正数的平方根有两个,对解题方式有提醒按要求】练习题一:完成书本4页练习。练习题二:1、平方得81的数是,因此81的平方根是。2、平方根是它本身的数是。3、如果-b是a的平方根,那么2222A、b=a;B、a=b;C、b=-a;D、a=-b。【设计说明:在练习的过程中,无论哪个层次的学生其回答只得法,我们教师要给与鼓励和肯定】(四)布置作业,巩固新知P71、2可选用:下列各数有平方根吗?如果有,写出它的平方根;如果没有,请说明理由。12(-4.3)-9-52。(1)4;(2);(3);(4)(五)教后反思-2-http://www.
6、docin.com/fjndmahttp://www.duk.cn/20018901.1平方根(第2课时)编写时间:年月日执行时间:年月日总序第个教案【教学目标】1、了解算术平方根的概念,会用根号表示数的算术平方根。2、了解开方与乘方互为逆运算,会用平方根运算求某些非负数的算术平方根。3、能运用算术平方根解决一些简单的实际问题。【教学重点难点】理解算术平方根的意义,能运用算术平方根解决一些简单的实际问题【教学方法】观察、比较、合作、交流、探索.【设计思路】本节课通过问题情景使学生在计算、探索、交流的过程中能感悟到算术平方根的意义,并且能运用算术平方根解决一些简单的实际问题
7、。在教学中要让每个学生都参与到活动中去,感受学习的乐趣,提高学习数学的兴趣,教学千万不能在走老路,先告诉规律,然后讲例题,在做练习。【教学过程】(一)创设情景,感悟新知情景一:小明家装修新居,计划用100块地板砖来铺设面积为25平方米的客厅地面,请帮他计算:每块正方形地板砖的边长为多少时,才正好合适(不浪费)?情景二:求4个直角边长为10厘米的等腰直角三角形纸片拼合成的正方形的边长?【设计说明:将生活实际与数学联系起来,更能激发学生的兴趣,便于学生主动发现一个数的算术平方根——正的平方根,为解决问题提供方便】教师讲解:正数有个
此文档下载收益归作者所有