资源描述:
《初三总复习函数-与其图像知识点》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、-第六章:函数及其图像知识点:一、平面直角坐标系1、平面内有公共原点且互相垂直的两条数轴,构成平面直角坐标系。在平面直角坐标系内的点和有序实数对之间建立了—一对应的关系。2、不同位置点的坐标的特征:(1)各象限内点的坐标有如下特征:点P(x,y)在第一象限x>0,y>0;点P(x,y)在第二象限x<0,y>0;点P(x,y)在第三象限x<0,y<0;点P(x,y)在第四象限x>0,y<0。(2)坐标轴上的点有如下特征:点P(x,y)在x轴上y为0,x为任意实数。点P(x,y)在y轴上x为0,y为任意实数。3.点P(x,y)坐标
2、的几何意义:(1)点P(x,y)到x轴的距离是
3、y
4、;(2)点P(x,y)到y袖的距离是
5、x
6、;(3)点P(x,y)到原点的距离是x2y24.关于坐标轴、原点对称的点的坐标的特征:(1)点P(a,b)关于x轴的对称点是P1(a,b);(2)点P(a,b)关于x轴的对称点是P2(a,b);(3)点P(a,b)关于原点的对称点是P3(a,b);二、函数的概念1、常量和变量:在某一变化过程中可以取不同数值的量叫做变量;保持数值不变的量叫做常量。2、函数:一般地,设在某一变化过程中有两个变量x和y,如果对于x的每一个值,y都有唯一的值
7、与它对应,那么就说x是自变量,y是x的函数。(1)自变量取值范围的确是:①解析式是只含有一个自变量的整式的函数,自变量取值范围是全体实数。②解析式是只含有一个自变量的分式的函数,自变量取值范围是使分母不为0的实数。③解析式是只含有一个自变量的偶次根式的函数,自变量取值范围是使被开方数非负的实数。注意:在确定函数中自变量的取值范围时,如果遇到实际问题,还必须使实际问题有意义。(2)函数值:给自变量在取值范围内的一个值所求得的函数的对应值。(3)函数的表示方法:①解析法;②列表法;③图像法(4)由函数的解析式作函数的图像,一般步骤
8、是:①列表;②描点;③连线三、几种特殊的函数1、一次函数---直线位置与k,b的关系:(1)k>0直线向上的方向与x轴的正方向所形成的夹角为锐角;(2)k<0直线向上的方向与x轴的正方向所形成的夹角为钝角;(3)b>0直线与y轴交点在x轴的上方;(4)b=0直线过原点;(5)b<0直线与y轴交点在x轴的下方;2、二次函数抛物线位置与a,b,c的关系:a0开口向上(1)a决定抛物线的开口方向a0开口向下---(2)c决定抛物线与y轴交点的位置:c>0图像与y轴交点在x轴上方;c=0图像过原点;c<0图像与y轴交点在x
9、---轴下方;---(3)a,b决定抛物线对称轴的位置:a,b同号,对称轴在y轴左侧;b=0,对称轴是---y轴;a,b异号。对称轴在y轴右侧;---3、反比例函数:4、正比例函数与反比例函数的对照表:例题:---例1、正比例函数图象与反比例函数图象都经过点P(m,4),已知点P到x轴的距离是到---y轴的距离2倍.⑴求点P的坐标.;⑵求正比例函数、反比例函数的解析式。---分析:由点P到x轴的距离是到y轴的距离2倍可知:2
10、m
11、=4,易求出点P的坐标,---再利用待定系数法可求出这正、反比例函数的解析式。-
12、--例2、已知a,b是常数,且y+b与x+a成正比例.求证:y是x的一次函数.分析:应写出y+b与x+a成正比例的表达式,然后判断所得结果是否符合一次函数定义.例3、填空:如果直线方程ax+by+c=0中,a<0,b<0且bc<0,则此直线经过第________象限.分析:先把ax+by+c=0化为axc.因为a<0,b<0,所以a0,a0,又bc<0,bbbb即c<0,故-c>0.相当于在一次函数y=kx+l中,k=-a<0,l=-c>0,此直线与y---bb轴的交点(0,-cbb)在x轴上方.且此直线的向上方向与x轴正方
13、向所成角是钝角,所以此---b直线过第一、二、四象限.例4、把反比例函数y=k与二次函数y=kx2(k≠0)画在同一个坐标系里,正确的是().x答:选(D).这两个函数式中的k的正、负号应相同(图13-110).例5、画出二次函数y=x2-6x+7的图象,根据图象回答下列问题:(1)当x=-1,1,3时y的值是多少?(2)当y=2时,对应的x值是多少?(3)当x>3时,随x值的增大y的值怎样变化?(4)当x的值由3增加1时,对应的y值增加多少?分析:要画出这个二次函数的图象,首先用配方法把y=x2-6x+7变形为y=(x-3)
14、2-2,确定抛物线的开口方向、对称轴、顶点坐标,然后列表、描点、画图.---例6、拖拉机开始工作时,油箱有油45升,如果每小时耗油6升.(1)求油箱中的余油量Q(升)与工作时间t(时)之间的函数关系式;(2)画出函数的图象.答:(1)Q=45-6t.(2)图象略.注意:这是实