欢迎来到天天文库
浏览记录
ID:36853431
大小:3.52 MB
页数:30页
时间:2019-05-11
《3[1].2.2函数模型的应用实例》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、3.2.2函数模型的应用实例主讲人:龚超一、新课引入到目前为止,我们已经学习了哪些常用函数?一次函数二次函数指数函数对数函数幂函数(a≠0)问题某同学早上起床太晚,为避免迟到,不得不跑步到教室,但由于平时不注意锻炼身体,结果跑了一段就累了,不得不走完余下的路程。如果用纵轴表示家到教室的距离,横轴表示出发后的时间,则下列四个图象比较符合此人走法的是()0(A)0(B)0(D)0(C)例3:一辆汽车在某段路程中的行驶速率与时间的关系如图:t13452V102030407060508090(一)求图中阴
2、影部分的面积,并说明所求面积的实际含义。5080657590(Km/h)(h)0解(1)阴影部分的面积为阴影部分的面积表示汽车在这5小时内行驶的路程为360km(2)假设这辆汽车的里程表在行驶这段路程前的读数为2004km,试建立汽车行驶这段路程时汽车里程表读数skm与时间th的函数解析式,并作出相应的图像。t13452V102030407060508090这个函数的图像如下图所示:(2)根据图形可得:12345x13452y20002100220023002400......分段函数是刻画现实世
3、界的重要模型解决应用题的一般程序是:①审题:弄清题意,分清条件和结论,理顺数量关系;②建模:将文字语言转化为数学语言,利用数学知识,建立相应的数学模型;③解模:求解数学模型,得出数学结论;④还原:将用数学知识和方法得出的结论,还原为实际问题的意义.例4:人口问题是当今世界各国普遍关注的问题。认识人口数量的变化规律,可以为有效控制人口增长提供依据。早在1798年,英国经济学家马尔萨斯就提出了自然状态下的人口增长模型:其中t表示经过的时间,表示t=0时的人口数,r表示人口的年平均增长率。下面是1950
4、~1959年我国的人口数据资料:55196563005748258796602666145662828645636599467207(1)如果以各年人口增长率的平均值作为我国这一时期的人口增长率(精确到0.0001),用马尔萨斯人口增长模型建立我国在这一时期的具体人口增长模型,并检验所得模型与实际人口数据是否相符;1950195119521953195419551956195719581959(2)如果按表中数据的增长趋势,大约在哪一年我国的人口达到13亿?于是,1951~1959年期间,我国人口
5、的年平均增长率为5000055000600006500070000012345ty6789由上图可以看出,所得模型与1950~1959年的实际人中数据基本吻合.(2)将y=130000代入y=55196e0.0221t,由计算机可得:t≈38.76这就是说按照这个增长趋势,那么大约在1950年后的第39年(即1989年),我国的人口就已经达到13亿。如果不实行计划生育,而让人口自然增长,今天我国将面临难以承受的人口压力!解模验模用模例5某桶装水经营部每天的房租、人员工资等固定成本为200元,每桶水
6、的进价是5元,销售单价与日均销售量的关系如表所示:请根据以上数据作出分析,这个经营部怎样定价才能获得最大利润?销售单价/元6789101112日均销售量/桶480440400360320280240分析:由表中信息可知①销售单价每增加1元,日均销售量就减少40桶②销售利润怎样计算较好?解:设在进价基础上增加x元后,日均经营利润为y元,则有日均销售量为480-40(x-1)=520-40x(桶)而有最大值只需将销售单价定为11.5元,就可获得最大的利润。解模验模用模选模例6某地区不同身高的未成年男性
7、的体重平均值如表身高/cm60708090100110120130140150160170体重/kg6.137.909.9912.1515.0217.5020.9226.8631.1138.8547.2555.05(1)根据表所提供的数据,能否建立恰当的函数模型,使它能比较近似地反映这个地区未成年男性体重ykg与身高xcm的函数关系?试写出这个函数模型的解析式.(2)若体重超过相同身高男性体重平均值的1.2倍为偏胖,低于0.8倍为偏瘦,那么这个地区一名身高为175cm,体重为78kg的在校男生的体
8、重是否正常?给出数据建模的程序收集数据画散点图选择模型求解模型检验模型使用模型不符合注意点:1.在引入自变量建立目标函数解决函数应用题时,一是要注意自变量的取值范围,二是要检验所得结果,必要时运用估算和近似计算,以使结果符合实际问题的要求.2.在实际问题向数学问题的转化过程中,要充分使用数学语言,如引入字母,列表,画图等使实际问题数学符号化.3.对于建立的各种数学模型,要能够模型识别,充分利用数学方法加以解决,并能积累一定数量的典型的函数模型,这是顺利解决实际问题的重要资本.1.一
此文档下载收益归作者所有