欢迎来到天天文库
浏览记录
ID:36805517
大小:251.05 KB
页数:17页
时间:2019-05-15
《人教版九年级数学上册课本知识点归纳》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、九年级上册数学课本知识点归纳第21章一元二次方程一、学习目标1、理解一元二次方程的概念2、学会一元二次方程的解法3、了解方程的根与系数的关系4、掌握一元二次方程的实际应用二、重点一、一元二次方程1、一元二次方程含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程叫做一元二次方程。2、一元二次方程的一般形式,其中叫做二次项,a叫做二次项系数;bx叫做一次项,b叫做一次项系数;c叫做常数项。二、降次----解一元二次方程1.降次:把一元二次方程化成两个一元一次方程的过程(不管用什么方法解一元二次方程,都是要一元二次方程降次)2、直接开平方法利用平方根的定义直接开平方求一元二
2、次方程的解的方法叫做直接开平方法。直接开平方法适用于解形如x2=b或的一元二次方程。根据平方根的定义可知,是b的平方根,当时,,,当b<0时,方程没有实数根。173、配方法:配方法的理论根据是完全平方公式,把公式中的a看做未知数x,并用x代替,则有。配方法解一元二次方程的步骤是:①移项、②配方(写成平方形式)、③用直接开方法降次、④解两个一元一次方程、⑤判断2个根是不是实数根。4、公式法:公式法是用求根公式,解一元二次方程的解的方法。一元二次方程的求根公式:当>0时,方程有两个实数根。当=0时,方程有两个相等实数根。当<0时,方程没有实数根。5、因式分解法:先将一元二次方程因式分解,
3、化成两个一次式的乘积等于0的形式,再使这两个一次式分别等于0,从而实现降次,这种解叫因式分解法。这种方法简单易行,是解一元二次方程最常用的方法。三、一元二次方程根的判别式根的判别式:一元二次方程中,叫做一元二次方程的根的判别式,通常用“”来表示,即四、一元二次方程根与系数的关系如果方程的两个实数根是,由求根公式可算出,。第22章二次函数17一、学习目标1、理解二次函数的概念2、学会画二次函数的图象3、掌握二次函数的性质4、学会函数图象的平移5、能够运用二次函数解决实际问题二、重点1、二次函数的解析式①一般式:(a、b、c为常数),则称y为x的二次函数。②顶点式:③交点式(与x轴):2
4、、抛物线的性质①二次函数的图像是一条永无止境的抛物线。②a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下。a还可以决定开口大小,a越大开口就越小,a越小开口就越大。③抛物线是轴对称图形。对称轴为直线.④对称轴与抛物线唯一的交点为抛物线的顶点P。特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)⑤抛物线有一个顶点P,坐标为P()当时,P在y轴上;当时,P在x轴上。⑥二次项系数a决定抛物线的开口方向和大小。当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。
5、a
6、越大,则抛物线的开口越小。⑦一次项系数b和二次项系数a共同决定对称轴
7、的位置:17Ⅰ.当a与b同号时(即ab>0),对称轴在y轴左;因为若对称轴在左边则对称轴小于0,也就是-b/2a<0,所以b/2a要大于0,所以a、b要同号Ⅱ.当a与b异号时(即ab<0),对称轴在y轴右。因为对称轴在右边则对称轴要大于0,也就是-b/2a>0,所以b/2a要小于0,所以a、b要异号事实上,b有其自身的几何意义:抛物线与y轴的交点处的该抛物线切线的函数解析式(一次函数)的斜率k的值。可通过对二次函数求导得到。⑧常数项c决定抛物线与y轴交点。抛物线与y轴交于(0,c)⑨二次函数的增减性抛物线,若a>0,当时,y随x的增大而减小;当时,y随x的增大而增大.若a<0,当时,
8、y随x的增大而增大;当时,y随x的增大而减小.抛物线的最值:如果a>0(a<0),则当时,y最小(大)值=.3、二次函数,,(各式中,a≠0)的图象形状相同,只是位置不同,它们的顶点坐标及对称轴如下表:函数解析式开口方向对称轴顶点坐标17当时开口向上当时开口向下(轴)(0,0)(轴)(0,)(,0)(,)()4、二次函数与一元二次方程二次函数(以下称函数)当y=0时,二次函数为关于x的一元二次方程(以下称方程),即)此时,函数图像与x轴有无交点即方程有无实数根;函数与x轴交点的横坐标即为方程的根。抛物线的图象与坐标轴的交点:Δ>0,图象与x轴交于两点:(,0)和(,0);Δ=0,图象
9、与x轴交于一点:(,0);Δ<0,图象与x轴无交点;5.用待定系数法求二次函数的解析式 (1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式: (2)当题给条件为已知图象的顶点坐标或对称轴或极大(小)值时,可设解析式为顶点式:. (3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:.6.二次函数的应用二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。因此,以二次函数知识为主的综合
此文档下载收益归作者所有