欢迎来到天天文库
浏览记录
ID:36606561
大小:3.29 MB
页数:187页
时间:2019-05-09
《SPSS软件-回归分析》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、SPSS16实用教程第7章回归分析回归分析基本概念7.1一元线性回归分析7.2多元线性回归分析7.3非线性回归分析7.4曲线估计7.5时间序列的曲线估计7.6含虚拟自变量的回归分析7.7含虚拟自变量的回归分析7.8在数量分析中,经常会看到变量与变量之间存在着一定的联系。要了解变量之间如何发生相互影响的,就需要利用相关分析和回归分析。在上一章讲述了相关分析有关内容。本章介绍回归分析基本概念,回归分析的主要类型:一元线性回归分析、多元线性回归分析、非线性回归分析、曲线估计、时间序列的曲线估计、含虚拟自变量的回归分析以及逻辑回归分析等。7.1回归分析基本概念相关分析和回归分析都是研究变量间
2、关系的统计学课题。在应用中,两种分析方法经常相互结合和渗透,但它们研究的侧重点和应用面不同。在回归分析中,变量y称为因变量,处于被解释的特殊地位;而在相关分析中,变量y与变量x处于平等的地位,研究变量y与变量x的密切程度和研究变量x与变量y的密切程度是一样的。在回归分析中,因变量y是随机变量,自变量x可以是随机变量,也可以是非随机的确定变量;而在相关分析中,变量x和变量y都是随机变量。相关分析是测定变量之间的关系密切程度,所使用的工具是相关系数;而回归分析则是侧重于考察变量之间的数量变化规律,并通过一定的数学表达式来描述变量之间的关系,进而确定一个或者几个变量的变化对另一个特定
3、变量的影响程度。具体地说,回归分析主要解决以下几方面的问题。通过分析大量的样本数据,确定变量之间的数学关系式。对所确定的数学关系式的可信程度进行各种统计检验,并区分出对某一特定变量影响较为显著的变量和影响不显著的变量。利用所确定的数学关系式,根据一个或几个变量的值来预测或控制另一个特定变量的取值,并给出这种预测或控制的精确度。作为处理变量之间关系的一种统计方法和技术,回归分析的基本思想和方法以及“回归(Regression)”名称的由来都要归功于英国统计学家F·Galton(1822~1911)。在实际中,根据变量的个数、变量的类型以及变量之间的相关关系,回归分析通常分为一元线
4、性回归分析、多元线性回归分析、非线性回归分析、曲线估计、时间序列的曲线估计、含虚拟自变量的回归分析和逻辑回归分析等类型。7.2一元线性回归分析7.2.1统计学上的定义和计算公式定义:一元线性回归分析是在排除其他影响因素或假定其他影响因素确定的条件下,分析某一个因素(自变量)是如何影响另一事物(因变量)的过程,所进行的分析是比较理想化的。其实,在现实社会生活中,任何一个事物(因变量)总是受到其他多种事物(多个自变量)的影响。在实际问题中,由于所要研究的现象的总体单位数一般是很多的,在许多场合甚至是无限的,因此无法掌握因变量y总体的全部取值。也就是说,总体回归方程事实上是未知的,需要利用
5、样本的信息对其进行估计。显然,样本回归方程的函数形式应与总体回归方程的函数形式一致。通过样本数据建立一个回归方程后,不能立即就用于对某个实际问题的预测。因为,应用最小二乘法求得的样本回归直线作为对总体回归直线的近似,这种近似是否合理,必须对其作各种统计检验。一般经常作以下的统计检验。(1)拟合优度检验回归方程的拟合优度检验就是要检验样本数据聚集在样本回归直线周围的密集程度,从而判断回归方程对样本数据的代表程度。回归方程的拟合优度检验一般用判定系数R2实现。该指标是建立在对总离差平方和进行分解的基础之上。(2)回归方程的显著性检验(F检验)回归方程的显著性检验是对因变量与所有自变量之间
6、的线性关系是否显著的一种假设检验。回归方程的显著性检验一般采用F检验,利用方差分析的方法进行。(3)回归系数的显著性检验(t检验)所谓回归系数的显著性检验,就是根据样本估计的结果对总体回归系数的有关假设进行检验。之所以对回归系数进行显著性检验,是因为回归方程的显著性检验只能检验所有回归系数是否同时与零有显著性差异,它不能保证回归方程中不包含不能较好解释说明因变量变化的自变量。因此,可以通过回归系数显著性检验对每个回归系数进行考察。回归参数显著性检验的基本步骤。①提出假设②计算回归系数的t统计量值③根据给定的显著水平α确定临界值,或者计算t值所对应的p值④作出判断研究问题合成纤维的强
7、度与其拉伸倍数有关,测得试验数据如表7-1所示。求合成纤维的强度与拉伸倍数之间是否存在显著的线性相关关系。7.2.2SPSS中实现过程表7-1强度与拉伸倍数的试验数据序号拉伸倍数强度(kg/mm2)12.01.622.52.432.72.543.52.754.03.564.54.275.25.086.36.497.16.5108.07.3119.08.01210.08.1实现步骤图7-1在菜单中选择“Linear”命令图7-2“LinearRegress
此文档下载收益归作者所有