欢迎来到天天文库
浏览记录
ID:36124650
大小:549.50 KB
页数:17页
时间:2019-05-06
《多边形的内角和与外角和(1)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第六章平行四边形4多边形的内角和与外角和(一)西安高新一中初中校区邹国胜雒萍创设现实情境,提出问题1.三角形是如何定义的?2.仿照三角形定义,你能学着给四边形、五边形……边形下定义吗?实验探究1.三角形的内角和是多少度?你是怎么得出的?2.四边形的内角和是多少?你又是怎样得出的?①、度量;②、拼角;③、将四边形转化成三角形求内角和。3.在四边形内角和的探索过程中,用到了几种方法,你认为哪种方法好?请讲述你的理由。4.根据四边形的内角和的求法,你能否求出五边形的内角和呢?方法总结:方法1:如图1,连结A
2、D、AC,五边形的内角和为:3×180°=540°。方法2:如图2,连结AC,则五边形内角和为:360°+180°=540°。方法3:如图3,在AB上任取点F,连FC、FD、FE,则五边形的内角和为:4×180-180°=540°。方法4:如图4,在五边形内任取一点O,连结OA、OB、OC、OD、OE,则五边形内角和为:5×180°-360°=540°。方法5:如图5,在AB上任取一点F,连结FD,则五边形的内角和为:2×360°-180°=540°。方法6:如图6,在五边开外任取一点O,连结OA、O
3、B、OC、OD、OE,则五边形内角和为:4×180°-180°=540°。小结:纵观以上各种证明思路,其共同点是通过图形分割,把五边形问题转化为熟悉的三角形、四边形问题来解决。5.小组合作,完成下面的表格:01180°122×180°233×180°344×180°(n-3)(n-2)(n-2)×180°结论:从多边形的一个顶点可以引出(n-3)条对角线,把n边形分成(n-2)个三角形。从而得出:n边形的内角和是(n-2)·180°。巩固训练1.如图6-24,四边形ABCD中,∠A+∠C=180°,∠
4、B与∠D有怎样的关系?2.一个多边形的内角和为1440°,则它是几边形?3.一个多边形的边数增加1,则它的内角和将如何变化?拓展延伸想一想:观察图中的多边形,它们的边、角有什么特点?正多边形定义:在平面内,每个内角都相等、每条边也都相等的多边形叫做正多边形。议一议:①一个多边形的边都相等,它的内角一定都相等吗?②一个多边形的内角都相等,它的边一定都相等吗?练一练:①正三角形、正四边形(正方形)、正五边形、正六边形、正八边形的内角分别是多少度?②正n边形的内角是多少度?③一个正多边形的每个内角都是150
5、°,求它的边数?思维升华议一议:剪掉一张长方形纸片的一个角后,纸片还剩几个角?这个多边形的内角和是多少度?与同伴交流.知识小结1.过本节课的学习,你学到了哪些知识?有何体会?2.在学习多边形的有关概念时,我们使用了由特殊到一般的数学方法,并运用了类比、转化的思想方法。作业:C.155页习题6.71,2.3题;B.探究五角星的五个角的度数之和;A.设计一个实验(如剪纸、拼图等),说明四边形的内角和是360°。谢谢!
此文档下载收益归作者所有