欢迎来到天天文库
浏览记录
ID:3569266
大小:49.00 KB
页数:4页
时间:2017-11-22
《4.4 课题学习 设计制作长方体形状的包装纸盒》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、4.4课题学习设计制作长方体形状的包装纸盒教学目标1.通过对长方体和它的表面的探索,进一步了解直线与直线的平行、相交、异面的关系,以及直线与平面、平面与平面的平行、垂直的关系。2.会设计制作长方体纸盒,并对纸盒进行美术设计。3.培养学生观察、实验、分析、判断、归纳和概括的能力,空间想象力、综合应用知识的能力和语言表达能力、审美能力,渗透空间图形和平面图形之间的相互联系。相互转化的数学思想,培养学生的实践意识、创新精神和团队合作的精神,发展学生的个性品质和特长。教学重点难点学生自己动手教学过程[引导性材料]按“同质”的原则将学生分成若干个小组(分8~10组),每组准备
2、一只长21厘米、宽14厘米、高7厘米的长方体白纸板盒,一只墨水瓶,另配有白纸一块,剪纸刀、剪子、胶水、刻度尺、铅笔和彩笔各一支。(教师应对学生合理、有效地分组,尽可能做到组间同质、组内异质。“同质”,就可以保证各组实践操作所花的时间大体一致,也便于各小组之间进行公平的比较和竞争;“异质”,即组内成员的差异性,有利于每个成员发挥其个性和特长,有效地展开互助与合作。)(另外,为了便于学生直观地探索和研究立体图形和平面图形的关系,顺利地设计制作墨水瓶的包装盒。教师要预先制作几个长方体纸板盒。制作时,盒子尽量要做大一点,便于学生观察;面与面之间的连接处都要用胶带封好,不留下
3、制作的痕迹,使各棱在外观上保持一致,学生沿棱将纸盒剪开时,可随机地得到不同的平面展开图,以有利于发展学生的求异思维。)教师在讲台上展示出粉笔盒、玻璃杯、药品、营养品等各种各样的产品包装盒,问:这些包装盒的形状有什么共同的特点呢?从而提出本节课的主题:长方体和它的表面。[知识产生和发展过程的教学设计]问题1--1:长方体是一个立体图形,它是由几个面、多少条棱、多少个顶点组成的呢?问题1--2:长方体的6个面是平面图形还是立体图形?是什么形状?长方体中相对的两个面有什么特殊的位置关系?(互相平行)这两个面的形状有什么关系?(相同)。它们的面积呢?(相等)长方体中相邻的两
4、个面有什么特殊的位置关系呢?(互相垂直)4问题1--3:长方体的棱共有12条,同一方向的棱的大小和位置有什么特殊的关系呢?(同一方向的棱互相平行,且长度相等)不同方向的棱呢?(不同方向的校互相垂直或异面,长度不一定相等)。(学生回答时有可能答不全,教师要根据情况分位置关系和大小两方面引导学生去观察、比较、思考;另一方面,教师可要求学生根据学过的定义,找出平行、垂直、异面的棱,找出互相平行、互相垂直的棱与面、面与面。)问题2--1:现在请将每一组的纸制长方体沿棱剪开,展开成一个完整的平面展开图,需要剪开多少条棱?(由组长负责,人人参与,分工明确,团结合作,强调用剪刀和
5、剪纸刀时要注意安全,尽量保持卫生。)(剪开长方体纸盒,得到平面展开图,应剪开七条棱)问题2--2:如图2.8—1所示,将其沿棱剪开,所得的平面展开图是什么样的?由各小组长到讲台前分别展示所得的图形。(共有如图2.8-2~图2.8-7所示的六种图形)图2.8-1 图2.8-2 图2.8-34 图2.8-4 图2.8-5 图2.8-6 图2.8-7(由于每组学生剪开的棱不同,会得到不同的平面展开图形,教师要对学生的创新活动给予充分的肯定,即使
6、不能全部展示六种情况也没关系,教师可以继续让学生探索,直到展示出六种情况为止。)问题2--3:你能试着从六个平面展开图中发现它们的共同特点吗?(它是由长方体的表面所组成的。六个表面在同一平面内;边与边之间互相平行或垂直;原来相对的面成为相隔的面;长方体的长、宽、高成了其平面展开图中的每个长方形的长和宽。)(学生可能不能完全讨论出结果,教师可在启发之后,给予完整的结论。)问题3--1:按刚才长方体的平面展开图的大小,在白纸板上制作出平面图,并折成长方体。(培养学生观察实验能力,在动手制作的过程中一方面复习知识,另一方面加强组员之间的团结协作精神,发展学生的个性品质和特
7、长。)问题3--2:设计出与教科书中长城牌墨水瓶不同的图案,不仅可用彩笔在盒上画出包装盒表面的产品广告设计,而且可以用电脑进行创意。图案以朴实大方设计合理为主。(培养学生的审美能力,设计制作包装盒也不是件容易的事,一次不行可重来。当个人想法与大家想法不一致时,可保留自己的想法,个人服从集体,发挥团结合作的精神。)制作长方体形状的包装纸盒4问题4--1:如图2.8-8所示,长方体顶点A处有一只小蚂蚁,沿长方体表面爬行到B处,小蚂蚁非常聪明,它总是能按照最短的路线爬行,你能找到这条最短的路线吗?为什么?问题4--2:设计出与如果是从顶点A沿表面转一圈爬到顶点A′,最
此文档下载收益归作者所有