欢迎来到天天文库
浏览记录
ID:35318103
大小:28.25 KB
页数:3页
时间:2019-03-23
《2017考研数学考前必看知识点汇总》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、凯程考研,为学员服务,为学生引路!2017考研数学考前必看知识点汇总 第一章函数、极限与连续 1、函数的有界性 2、极限的定义(数列、函数) 3、极限的性质(有界性、保号性) 4、极限的计算(重点)(四则运算、等价无穷小替换、洛必达法则、泰勒公式、重要极限、单侧极限、夹逼定理及定积分定义、单调有界必有极限定理) 5、函数的连续性 6、间断点的类型 7、渐近线的计算 第二章导数与微分 1、导数与微分的定义(函数可导性、用定义求导数) 2、导数的计算(“三个法则一个表”:四则运算、复合函数、反函数,基本初等函数导数表;“三种类型”:幂指型、隐函数
2、、参数方程;高阶导数) 3、导数的应用(切线与法线、单调性(重点)与极值点、利用单调性证明函数不等式、凹凸性与拐点、方程的根与函数的零点、曲率(数一、二)) 第三章中值定理 1、闭区间上连续函数的性质(最值定理、介值定理、零点存在定理) 2、三大微分中值定理(重点)(罗尔、拉格朗日、柯西) 3、积分中值定理 4、泰勒中值定理 5、费马引理 第四章一元函数积分学 1、原函数与不定积分的定义 2、不定积分的计算(变量代换、分部积分) 3、定积分的定义(几何意义、微元法思想(数一、二)) 4、定积分性质(奇偶函数与周期函数的积分性质、比较定理)
3、 5、定积分的计算 6、定积分的应用(几何应用:面积、体积、曲线弧长和旋转面的面积(数一、二),物理应用:变力做功、形心质心、液体静压力) 7、变限积分(求导) 8、广义积分(收敛性的判断、计算) 第五章空间解析几何(数一) 1、向量的运算(加减、数乘、数量积、向量积) 2、直线与平面的方程及其关系 3、各种曲面方程(旋转曲面、柱面、投影曲面、二次曲面)的求法 第六章多元函数微分学 1、二重极限和二元函数连续、偏导数、可微及全微分的定义第3页共3页凯程考研,为学员服务,为学生引路! 2、二元函数偏导数存在、可微、偏导函数连续之间的关系 3
4、、多元函数偏导数的计算(重点) 4、方向导数与梯度 5、多元函数的极值(无条件极值和条件极值) 6、空间曲线的切线与法平面、曲面的切平面与法线 第七章多元函数积分学(除二重积分外,数一) 1、二重积分的计算(对称性(奇偶、轮换)、极坐标、积分次序的选择) 2、三重积分的计算(“先一后二”、“先二后一”、球坐标) 3、第一、二类曲线积分、第一、二类曲面积分的计算及对称性(主要关注不带方向的积分) 4、格林公式(重点)(直接用(不满足条件时的处理:“补线”、“挖洞”),积分与路径无关,二元函数的全微分) 5、高斯公式(重点)(不满足条件时的处理(类
5、似格林公式)) 6、斯托克斯公式(要求低;何时用:计算第二类曲线积分,曲线不易参数化,常表示为两曲面的交线) 7、场论初步(散度、旋度) 第八章微分方程 1、各类微分方程(可分离变量方程、齐次方程、一阶线性微分方程、伯努利方程(数一、二)、全微分方程(数一)、可降阶的高阶微分方程(数一、二)、高阶线性微分方程、欧拉方程(数一)、差分方程(数三))的求解 2、线性微分方程解的性质(叠加原理、解的结构) 3、应用(由几何及物理背景列方程) 第九章级数(数一、数三) 1、收敛级数的性质(必要条件、线性运算、“加括号”、“有限项”) 2、正项级数的判别
6、法(比较、比值、根值,p级数与推广的p级数) 3、交错级数的莱布尼兹判别法 4、绝对收敛与条件收敛 5、幂级数的收敛半径与收敛域 6、幂级数的求和与展开 7、傅里叶级数(函数展开成傅里叶级数,狄利克雷定理) 总之:相信大家只要能够深刻的理解基本概念,熟悉的掌握基本理论,综合的扩展基本方法,那么成功一定属于大家。凯程教育:凯程考研成立于2005年,国内首家全日制集训机构考研,一直从事高端全日制辅导,由李海洋教授、张鑫教授、卢营教授、王洋教授、杨武金教授、张释然教授、索玉柱教授、方浩教授等一批高级考研教研队伍组成,为学员全程高质量授课、答疑、测试、督导、
7、报考指导、方法指导、联系导师、复试等全方位的考研服务。凯程考研的宗旨:让学习成为一种习惯;凯程考研的价值观口号:凯旋归来,前程万里;信念:让每个学员都有好最好的归宿;使命:完善全新的教育模式,做中国最专业的考研辅导机构;第3页共3页凯程考研,为学员服务,为学生引路!激情:永不言弃,乐观向上;敬业:以专业的态度做非凡的事业;服务:以学员的前途为已任,为学员提供高效、专业的服务,团队合作,为学员服务,为学员引路。如何选择考研辅导班:在考研准备的过程中,会遇到不少困难,尤其对于跨专业考生的专业课来说,通过报辅导班来弥补自己复习的不足,可以大大提高复习效率,节省复习时间
8、,大家可以通过以下几个方
此文档下载收益归作者所有