直流电机驱动技术报告

直流电机驱动技术报告

ID:35109317

大小:188.00 KB

页数:7页

时间:2019-03-18

直流电机驱动技术报告_第1页
直流电机驱动技术报告_第2页
直流电机驱动技术报告_第3页
直流电机驱动技术报告_第4页
直流电机驱动技术报告_第5页
资源描述:

《直流电机驱动技术报告》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、直流电机驱动控制电路设计摘要:直流电机因其良好的线性特性、优异的控制性能等特点成为大多数变速运动控制和闭环位置伺服控制系统的最佳选择。随着计算机在控制领域的发展,直流电机的应用也更加广泛。本文主要介绍了采用N沟道增强型场效应管,基于H桥的直流电机驱动控制电路中H桥功率驱动电路设计、电荷泵电路设计、电机驱动逻辑与放大电路设计,以及直流电机的PWM调速控制。关键字:H桥直流电机驱动控制电路N沟道增强型场效应管PWM1.直流电机驱动控制电路总体结构直流电机驱动控制电路分为电机驱动逻辑电路、电荷泵电路、驱动信号放大

2、电路、H桥功率驱动电路等四部分部分,其电路框图如图1所示。如图所示,电机驱动控制电路的外围接口简单,主要控制信号有Dir(电机运转方向信号),PWM(电机调速信号)及Brake(电机制动信号),Vcc为驱动逻辑电路部分提供电源,Vm为电机电源电压,M+、M-为直流电机接口。图1直流电机驱动控制电路框图2.H桥功率驱动电路原理H型全桥式电路是使用的最为广泛的直流电机驱动电路,实践证明,H型全桥式电路便于实现直流电机的四象限运行,即分别对应正转、正转制动、反转、反转制动。H桥功率驱动原理图如图2所示。H型全桥式

3、驱动电路的4只开关管都工作在斩波状态。其中,S1、S2为一组,S3、S4为一组,这两组状态互补,当一组导通时,另一组必须关断。当S1、S2导通时,S3、S4关断,电机两端加正向电压实现电机的正转或反转制动;当S3、S4导通时,S1、S2关断,电机两端为反向电压,电机反转或正转制动。图2H桥功率驱动原理图实际控制中,需要不断地使电机在正转和反转之间切换。这种情况理论上要求两组控制信号完全互补,但是由于实际的开关器件都存在导通和关断时间,绝对的互补控制逻辑会导致上下桥臂直通短路。为了避免直通短路且保证各个开关管

4、动作的协同性和同步性,两组控制信号理论上要求互为倒相,而实际必须相差一个足够长的死区时间,这个校正过程既可通过硬件实现,即在上下桥臂的两组控制信号之间增加延时,也可通过软件实现,即在状态之前加入适当的延时时间,一般us级单位的延时即可达到效果。图2中4只续流二极管,可为线圈绕组提供续流回路。当电机正常运行时,驱动电流通过主开关管流过电机。当电机处于制动状态时,电机工作在发电状态,转子电流必须通过续流二极管流通,否则电机就会发热,严重时甚至烧毁。3.直流电机驱动控制电路设计3.1H桥驱动电路设计在直流电机控制

5、中常用H桥电路作为驱动器的功率驱动电路。由于功率MOSFET是压控元件,具有输入阻抗大、开关速度快、无二次击穿现象等特点,满足高速开关动作需求,因此常用功率MOSFET构成H桥电路的桥臂。H桥电路中的4个功率MOSFET分别采用N沟道型和P沟道型,而P沟道功率MOSFET一般不用于下桥臂驱动电机,因此,用功率MOSFET构成H桥电路的桥臂有两种可行的方案:一种是上下桥臂分别用2个P沟道功率MOSFET和2个N沟道功率MOSFET;另一种是上下桥臂均用N沟道功率MOSFET。测试可知,利用2个N沟道功率MOS

6、FET和2个P沟道功率MOSFET驱动电机的方案,控制电路简单、成本低。但由于P沟道功率MOSFET的性能要比N沟道功率MOSFET的差,且驱动电流小,多用于功率较小的驱动电路中。综合考虑系统功率、可靠性要求,以及N沟道功率MOSFET的优点,采用4个相同的N沟道功率MOSFET的H桥电路,具备较好的性能和较高的可靠性,并具有较大的驱动电流,因此本系统采用此设计模式。其电路图如图3。图中8V为电机电源电压,4个二极管均为续流二极管,输出端并联的小电容C1(104),用于降低感性元件电机产生的尖峰电压。图3H

7、桥驱动电路3.2电荷泵电路设计电荷泵的基本原理是通过电容对电荷的积累效应而产生高压,使电流由低电势流向高电势。图4电荷泵电路电路中A部分是方波发生电路,由RC与反相施密特触发器构成,产生振幅为Vin=5V的方波。B部分是电荷泵电路,由三阶电荷泵构成。当a点为低电平时,二极管D1导通电容C1充电,使b点电压Vb=Vm-Vtn;当a点为高电平时,由于电容C1电压不能突变,故b点电压Vb=Vm+Vin-Vtn,此时二极管D2导通,电容C3充电,使c点电压Vx=Vm+Vin-2Vtn;当a点为低电平时,二极管D1、

8、D3导通,分别对电容C1、C2充电,使得d点电压Vd=Vm+Vin-3Vtn;当a点再为高电平时,由于电容C2电压不能突变,故d点电压变为Vd=Vm+2Vin-3Vtn,此时二极管D2、D4导通,分别对电容C3、c4充电,使e点电压Ve=Vm+2Vin-4Vtn。这样如此循环,便在g点得到比Vm高的电压Vh=Vm+3Vin-6tn=Vm+11.4V。其中Vm为二极管压降,一般取0.6V,从而保证H桥的上臂完全导通

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。