全国高中三角函数典型例题(教用)

全国高中三角函数典型例题(教用)

ID:34686023

大小:152.87 KB

页数:6页

时间:2019-03-09

全国高中三角函数典型例题(教用)_第1页
全国高中三角函数典型例题(教用)_第2页
全国高中三角函数典型例题(教用)_第3页
全国高中三角函数典型例题(教用)_第4页
全国高中三角函数典型例题(教用)_第5页
资源描述:

《全国高中三角函数典型例题(教用)》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、【典型例题】:1、已知,求的值.解:因为,又,联立得解这个方程组得2、求的值。解:原式3、若,求的值.解:法一:因为所以得到,又,联立方程组,解得所以法二:因为所以,所以,所以,所以有4、求证:。5、求函数在区间上的值域。解:因为,所以,由正弦函数的图象,得到,所以6、求下列函数的值域.(1);(2))解:(1)=令,则利用二次函数的图象得到(2)=令,则则利用二次函数的图象得到7、若函数y=Asin(ωx+φ)(ω>0,φ>0)的图象的一个最高点为,它到其相邻的最低点之间的图象与x轴交于(6,0),求这个函数的一个解析式。矚慫润厲

2、钐瘗睞枥庑赖。解:由最高点为,得到,最高点和最低点间隔是半个周期,从而与x轴交点的间隔是个周期,这样求得,T=16,所以聞創沟燴鐺險爱氇谴净。又由,得到可以取8、已知函数f(x)=cos4x-2sinxcosx-sin4x.(Ⅰ)求f(x)的最小正周期;(Ⅱ)若求f(x)的最大值、最小值.数的值域.解:(Ⅰ)因为f(x)=cos4x-2sinxcosx-sin4x=(cos2x-sin2x)(cos2x+sin2x)-sin2x残骛楼諍锩瀨濟溆塹籟。所以最小正周期为π.(Ⅱ)若,则,所以当x=0时,f(x)取最大值为当时,f(x)取

3、最小值为9、已知,求(1);(2)的值.解:(1);(2).说明:利用齐次式的结构特点(如果不具备,通过构造的办法得到),进行弦、切互化,就会使解题过程简化。10、求函数的值域。解:设,则原函数可化为,因为,所以当时,,当时,,所以,函数的值域为。11、已知函数;(1)求的最小正周期、的最大值及此时x的集合;(2)证明:函数的图像关于直线对称。解:(1)所以的最小正周期,因为,所以,当,即时,最大值为;(2)证明:欲证明函数的图像关于直线对称,只要证明对任意,有成立,因为,,所以成立,从而函数的图像关于直线对称。12、已知函数y=c

4、os2x+sinx·cosx+1(x∈R),(1)当函数y取得最大值时,求自变量x的集合;(2)该函数的图像可由y=sinx(x∈R)的图像经过怎样的平移和伸缩变换得到?解:(1)y=cos2x+sinx·cosx+1=(2cos2x-1)++(2sinx·cosx)+1酽锕极額閉镇桧猪訣锥。=cos2x+sin2x+=(cos2x·sin+sin2x·cos)+=sin(2x+)+所以y取最大值时,只需2x+=+2kπ,(k∈Z),即x=+kπ,(k∈Z)。所以当函数y取最大值时,自变量x的集合为{x

5、x=+kπ,k∈Z}(2)将

6、函数y=sinx依次进行如下变换:(i)把函数y=sinx的图像向左平移,得到函数y=sin(x+)的图像;(ii)把得到的图像上各点横坐标缩短到原来的倍(纵坐标不变),得到函数y=sin(2x+)的图像;(iii)把得到的图像上各点纵坐标缩短到原来的倍(横坐标不变),得到函数y=sin(2x+)的图像;(iv)把得到的图像向上平移个单位长度,得到函数y=sin(2x+)+的图像。综上得到y=cos2x+sinxcosx+1的图像。

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。