数字图像处理课件8

数字图像处理课件8

ID:34603685

大小:4.49 MB

页数:69页

时间:2019-03-08

数字图像处理课件8_第1页
数字图像处理课件8_第2页
数字图像处理课件8_第3页
数字图像处理课件8_第4页
数字图像处理课件8_第5页
资源描述:

《数字图像处理课件8》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第八章图像分割Contents8.18.1图像分割定义图像分割定义8.28.2使用阈值进行图像分割使用阈值进行图像分割8.38.3基于梯度的图像分割方法基于梯度的图像分割方法8.48.4边缘检测和连接边缘检测和连接Contents8.58.5区域增长区域增长(RegionGrowing)(RegionGrowing)8.68.6二值图像处理二值图像处理(BinaryImageProcessing)(BinaryImageProcessing)8.78.7分割图像的结构分割图像的结构小结小结8.1图像分割定义§

2、图像分割处理:将数字图像划分成互不相交(不重叠)区域的过程.§区域(region):像素的连通集。§连通(connectedness):在一个连通集中的任意两个像素之间,存住一条完全由这个集合的元素构成的连通路径。8.2.1全局阈值化采用阈值确定边界的最简单做法是在整个图像中将灰度阈值的值设置为常数。如果背景的灰度值在整个图像中可合理地看作为恒定,而且所有物体与背景都具有几乎相同的对比度,那么,只要选择了正确的阈值,使用一个固定的全局阈值一般会有较好的效果。8.2.2自适应阈值在许多的情况下,背景的灰度值并不

3、是常数,物件和背景的对比度在图像中也有变化,这时,一个在图像中某一区域效果良好的阈值在其它区域却可能效果很差。在这种情况下,把灰度阈值取成一个随图像中位置缓慢变化的函数值是适宜的。8.2.3最佳阈值的选择除非图像中的物体有陡峭的边沿,否则灰度阈值的取值对所抽取物体的边界的定位和整体的尺寸有很大的影响。这意味着后续的尺寸(特别是面积)的测量对于灰度阈值的选择很敏感。由于这个原因,我们需要一个最佳的,或至少是具有一致性的方法确定阈值。1.直方图技术§含有一个与背景明显对比的物体的图像其有包含双峰的灰度直方图¥A=

4、òTH(D)dD直方图生成§a=imread('d:pici_boat_gray.bmp');imshow(a)figureimhist(a)§利用灰度阈值T对物体面积进行计算的定义是:¥A=òH(D)dDT2.最大类间方差法(OTSU)下图的自适应分割技术又称为OTSU算法,该算法是在灰度直方图的基础上用最小二乘法原理推导出来的,具有统计意义上的最佳分割阈值。§OTSU基本原理:以最佳阈值将图像的灰度直方图分割成两部分,是两部分之间的方差取最大值,即分离性最大。3.迭代法求阈值原理:图像中前景与背景之间

5、的灰度分布为相互不重叠,在该前提下,实现对两类对象的阈值分割方法。8.3基于梯度的图像分割方法先前的区域分割方法通过将图像划分为内部点集和外部点集来实现分割。与此相反,边界方法利用边界具有高梯度值的性质直接把边界找出来。8.3.1边界跟踪§首先:我们从一个梯度幅值图像着手进行处理,这个图像是从一幅处于和物体具有反差的背景中的单一物体的图像进行计算得来的。§其次:搜索以边界起始点为中心的3×3邻域,找出具有最大灰度级的邻域点作为第2个边界点。8.3.2梯度图像二值化§如果用适中的阈值对一幅梯度图像进行二值化,K

6、irsch的分割法利用了这种现象。这种技术首先用一个中偏低的灰度阈值对梯度图像进行二值化从而检测出物体和背景,物体与背景被处于阈值之上的边界点带分开。随着阈值逐渐提高,就引起物体和背景的同时增长。当它们接触上而又不至于合并时,可用接触点来定义边界。这是分水岭算法在梯度图像中的应用。Kirsch的分割算法8.3.3拉普拉斯边缘检测§拉普拉斯算于是对二维函数进行运算的二阶导数标量算子。它定义为:222¶¶Ñf(x,y)=f(x,y)+f(x,y)22¶x¶y一个无噪声图像具有陡峭的边缘,可用拉普拉斯算子将它们找出

7、来。对经拉普拉斯算子滤波后的图像用零灰度值进行二值化会产生闭合的、连通的轮廓并消除了所有的内部点。但是由于噪声的存在,在运用拉普拉斯算子之前需要先进行低通滤波。§选用高斯低通滤波器进行预先平滑是很合适的。由卷积的结合律可以将拉普拉斯算子和高斯脉冲响应组合成一个单一的高斯拉普拉斯核:2222+yx+y22x21-21x+y-2-Ñe2s=1[-]e2s2422psps2s这个脉冲响应对x和y是可分离的,因此可以有效地加以实现。8.4边缘检测和连接§边缘点:确定图像中的物体边界的另一种方法是先检测每个像素和其直接

8、邻域的状态,以决定该像素是否确实处于一个物体的边界上。具有所需特性的像素被标为边缘点。边缘图像:当图像中各个像素的灰度级用来反映各像素符合边缘像素要求的程度时,这种图像被称为边缘图像。8.4.1边缘检测边缘检测算子检查每个像素的邻域并对灰度变化率进行量化,通常也包括方向的确定。有若干种方法可以使用,其中大多数是基于方向导数掩模求卷积的方法。Roherts边缘算子2g(x,y)={[f(x,y)-f(

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。