欢迎来到天天文库
浏览记录
ID:34169081
大小:3.14 MB
页数:66页
时间:2019-03-04
《基于微博的知识词条推荐算法-研究》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、哈尔滨工业大学工学硕士学位论文AbstractWiththedevelopmentoftheInternet,thewayofoursociallifeandinformationacquiringhaschangeddramatically.Theriseofmicroblogsallowspeopletorapidlyaccesstheenormousamountofinformation,soitisimportanttodiscoverusefulinformationautomaticallyandrecom
2、mendtousers.Takingadvantageofknowledgediscoverymethodstodiscoverusefulinformationinmassivedataandusingsocialnetworkstosolvethesparsenessprobleminthetraditionalrecommendationalgorithmsareissuesofcurrentresearch.Microblog-basedknowledgediscoveryandrecommendationar
3、eproposedagainstthebackgroundofbigdataandpersonalizedera.Extractingknowledgefrommassivemicroblogsandrecommendingtheseknowledgetouserswhomightbeinterestedinthemarekeypointsofthisresearch.Whenconstructingthetrainingcorpus,wefindthatmostoftheknowledgeentrydiscovery
4、corpusesareconstructedfromthestandardtextsandtherehaven’tbeenanyopenstandardcorpusconstructedfrommicroblogs.Atthemeantime,socialnetwork-basedcorpusesaremainlyusedtorecommendmusicandfriends,andwecan’tfindanystandardcorpusforrecommendingmicroblogknowledgeentries.T
5、herefore,inthispaperweconstructacorpusformicroblogknowledgeentrydiscoveryandacorpusformicroblogknowledgeentryrecommendationbyusingamicroblogcrawlertogatherdataofmicroblogsandsocialrelationshipbetweenusers.Inthemicroblogknowledgeentrydiscoverytask,aCRFsmodelisado
6、ptedtoidentifyknowledgeentriesinthecorpus.InordertoimprovetherecallofthetraditionalCRFsmodel,wetrainwordclusteringsonunlabeleddataandconstructadictionaryfromthetrainingcorpus,thenmergethemintotheCRFsmodel.Asaresult,F1scoreofCRFsmodelwithwordclusteringfeaturesout
7、performstheonewithbasicfeaturesatanimprovementof0.0656,andtheCRFsmodel’swithdictionaryfeatureraisesby0.0805,andCRFsmodel’swithbothfeaturesraisesby0.0843.Besides,wecomparetheeffectofdifferentnumberofclustersanddifferentsizeofcorpushasonwordembeddingfeatures.Inthe
8、microblogknowledgeentryrecommendationtask,weusesocialrelationshipsbetweenusersandtimefactortoimprovethetraditionalcollaborativefilteringalgorithms,andcompareitwiththe
此文档下载收益归作者所有