初中函数知识点总结、对应的练习题和答案

初中函数知识点总结、对应的练习题和答案

ID:31952852

大小:2.16 MB

页数:32页

时间:2019-01-29

初中函数知识点总结、对应的练习题和答案_第1页
初中函数知识点总结、对应的练习题和答案_第2页
初中函数知识点总结、对应的练习题和答案_第3页
初中函数知识点总结、对应的练习题和答案_第4页
初中函数知识点总结、对应的练习题和答案_第5页
资源描述:

《初中函数知识点总结、对应的练习题和答案》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、平面直角坐标系与一次函数、反比例函数、二次函数考点一、平面直角坐标系1.平面直角坐标系平面内两条有公共原点且互相垂直的数轴构成了平面直角坐标系,坐标平面内一点对应的有序实数对叫做这点的坐标.在平面内建立了直角坐标系,就可以把“形”(平面内的点)和“数”(有序实数对)紧密结合起来.2.各象限内点的坐标的特点、坐标轴上点的坐标的特点点P(x,y)在第一象限;点P(x,y)在第二象限;点P(x,y)在第三象限;点P(x,y)在第四象限;点P(x,y)在x轴上,x为任意实数;点P(x,y)在y轴上,y为任意实数;点P(x,

2、y)既在x轴上,又在y轴上x,y同时为零,即点P坐标为(0,0).3.两条坐标轴夹角平分线上点的坐标的特征点P(x,y)在第一、三象限夹角平分线上x与y相等;点P(x,y)在第二、四象限夹角平分线上x与y互为相反数.4.和坐标轴平行的直线上点的坐标的特征位于平行于x轴的直线上的各点的纵坐标相同;位于平行于y轴的直线上的各点的横坐标相同.5.关于x轴、y轴或原点对称的点的坐标的特征点P与点p′关于x轴对称横坐标相等,纵坐标互为相反数;点P与点p′关于y轴对称纵坐标相等,横坐标互为相反数;点P与点p′关于原点对称横、纵

3、坐标均互为相反数.6.点P(x,y)到坐标轴及原点的距离(1)点P(x,y)到x轴的距离等于;(2)点P(x,y)到y轴的距离等于;(3)点P(x,y)到原点的距离等于.要点诠释:(1)注意:x轴和y轴上的点,不属于任何象限;(2)平面内点的坐标是有序实数对,当时,(a,b)和(b,a)是两个不同点的坐标.考点二、函数1.函数的概念设在某个变化过程中有两个变量x、y,如果对于x在某一范围内的每一个确定的值,y都有唯一确定的值与它相对应,那么就说y是x的函数,x叫做自变量.2.自变量的取值范围对于实际问题,自变量取值

4、必须使实际问题有意义.对于纯数学问题,自变量取值应保证数学式子有意义.3.表示方法⑴解析法;⑵列表法;⑶图象法.第32页共32页4.画函数图象(1)列表:列表给出自变量与函数的一些对应值;(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点;(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来.要点诠释:确定自变量取值范围的原则:①使代数式有意义;②使实际问题有意义.考点三、几种基本函数(定义→图象→性质)1.正比例函数及其图象性质 (1)正比例函数:如果y=kx(k是常数,k≠0),那么y

5、叫做x的正比例函数.(2)正比例函数y=kx(k≠0)的图象: 过(0,0),(1,K)两点的一条直线.              (3)正比例函数y=kx(k≠0)的性质①当k>0时,图象经过第一、三象限,y随x的增大而增大;②当k<0时,图象经过第二、四象限,y随x的增大而减小.2.一次函数及其图象性质  (1)一次函数:如果y=kx+b(k,b是常数,k≠0),那么y叫做x的一次函数.(2)一次函数y=kx+b(k≠0)的图象第32页共32页(3)一次函数y=kx+b(k≠0)的图象的性质一次函数y=kx+b

6、的图象是经过(0,b)点和点的一条直线.①当k>0时,y随x的增大而增大;②当k<0时,y随x的增大而减小.             3.反比例函数及其图象性质(1)定义:一般地,形如(为常数,)的函数称为反比例函数.三种形式:(k≠0)或(k≠0)或xy=k(k≠0).(2)反比例函数性质:反比例函数k的符号k>0k<0图像性质①x的取值范围是x0,y的取值范围是y0;②当k>0时,函数图像的两个分支分别在第一、三象限.在每个象限内,y随x的增大而减小.①x的取值范围是x0,y的取值范围是y0;②当k<0时,函数

7、图像的两个分支分别在第二、四象限.在每个象限内,y随x的增大而增大.4、二次函数的定义一般地,如果(a、b、c是常数,a≠0),那么y叫做x的二次函数.要点诠释:二次函数(a≠0)的结构特征是:(1)等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2.(2)二次项系数a≠0.5、二次函数的图象及性质1.二次函数(a≠0)的图象是一条抛物线,顶点为.第32页共32页2.当a>0时,抛物线的开口向上;当a<0时,抛物线的开口向下.3.①

8、a

9、的大小决定抛物线的开口大小.

10、a

11、越大,抛物线的开口越小,

12、a

13、越小

14、,抛物线的开口越大.②c的大小决定抛物线与y轴的交点位置:c=0时,抛物线过原点;c>0时,抛物线与y轴交于正半轴;c<0时,抛物线与y轴交于负半轴.③ab的符号决定抛物线的对称轴的位置:当ab=0时,对称轴为y轴;当ab>0时,对称轴在y轴左侧;当ab<0时,对称轴在y轴的右侧.(PS:左同右异:对称轴在y轴左侧,则a和b同号,反之,异号)4.抛物线的图象

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。