高考数学二轮复习 第1部分 重点强化专题 专题4 立体几何 专题限时集训9 空间中的平行与垂直关系 理

高考数学二轮复习 第1部分 重点强化专题 专题4 立体几何 专题限时集训9 空间中的平行与垂直关系 理

ID:31544137

大小:202.50 KB

页数:7页

时间:2019-01-13

高考数学二轮复习 第1部分 重点强化专题 专题4 立体几何 专题限时集训9 空间中的平行与垂直关系 理_第1页
高考数学二轮复习 第1部分 重点强化专题 专题4 立体几何 专题限时集训9 空间中的平行与垂直关系 理_第2页
高考数学二轮复习 第1部分 重点强化专题 专题4 立体几何 专题限时集训9 空间中的平行与垂直关系 理_第3页
高考数学二轮复习 第1部分 重点强化专题 专题4 立体几何 专题限时集训9 空间中的平行与垂直关系 理_第4页
高考数学二轮复习 第1部分 重点强化专题 专题4 立体几何 专题限时集训9 空间中的平行与垂直关系 理_第5页
资源描述:

《高考数学二轮复习 第1部分 重点强化专题 专题4 立体几何 专题限时集训9 空间中的平行与垂直关系 理》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、专题限时集训(九) 空间中的平行与垂直关系(对应学生用书第95页)(限时:40分钟)题型1 空间位置关系的判断与证明1,3,6,7,8,9,10,12,14题型2 平面图形的翻折问题2,4,5,11,13一、选择题1.(2017·河北邢台二模)设m,n是两条不同的直线,α,β是两个不同的平面.给出下列四个命题:①若m∥n,m⊥β,则n⊥β;②若m∥n,m∥β,则n∥β;③若m∥α,m∥β,则α∥β;④若n⊥α,n⊥β,则α⊥β.其中真命题的个数为(  )A.1  B.2C.3D.4A [①是常用结论;②还有可能n⊂β;③还有可能α,β

2、相交,此时m与它们的交线平行;④垂直于同一直线的两个平面平行.故选A.]2.(2017·贵阳二模)如图96,在正方形ABCD中,E,F分别是BC,CD的中点,沿AE,AF,EF把正方形折成一个四面体,使B,C,D三点重合,重合后的点记为P,P点在△AEF内的射影为O,则下列说法正确的是(  )图96A.O是△AEF的垂心B.O是△AEF的内心C.O是△AEF的外心D.O是△AEF的重心A [由题意可知PA,PE,PF两两垂直,∴PA⊥平面PEF,从而PA⊥EF,而PO⊥平面AEF,则PO⊥EF.∵PO∩PA=P,∴EF⊥平面PAO,∴

3、EF⊥AO,同理可知AE⊥FO,AF⊥EO,∴O为△AEF的垂心.故选A.]3.(2016·长沙模拟)如图97,正方体ABCDA1B1C1D1的棱长为1,非常感谢上级领导对我的信任,这次安排我向股份公司述职,既是对我履行职责的监督,也是对我个人的关心和爱护,更是对**百联东方商厦有限公司工作的高度重视和支持。E,F是线段B1D1上的两个动点,且EF=,则下列结论中错误的是(  )图97A.AC⊥BFB.三棱锥ABEF的体积为定值C.EF∥平面ABCDD.异面直线AE,BF所成的角为定值D [对于选项A,连接BD(图略),易知AC⊥平面

4、BDD1B1.∵BF⊂平面BDD1B1,∴AC⊥BF,故A正确;对于选项B,∵AC⊥平面BDD1B1,∴A到平面BEF的距离不变.∵EF=,B到EF的距离为1,∴△BEF的面积不变,∴三棱锥ABEF的体积为定值,故B正确;对于选项C,∵EF∥BD,BD⊂平面ABCD,EF⊄平面ABCD,∴EF∥平面ABCD,故C正确;对于选项D,异面直线AE,BF所成的角不为定值,当F与B1重合时,令上底面中心为O,则此时两异面直线所成的角是∠A1AO,当E与D1重合时,点F与O重合,则两异面直线所成的角是∠OBC1,这两个角不相等,故异面直线AE,

5、BF所成的角不为定值,故D错误.]4.(2017·广东惠州三调)如图98是一个几何体的平面展开图,其中四边形ABCD为正方形,E,F分别为PA,PD的中点,在此几何体中,给出下面4个结论:图98①直线BE与直线CF异面;②直线BE与直线AF异面;③直线EF∥平面PBC;④平面BCE⊥平面PAD.其中正确的有(  )【导学号:07804069】A.1个B.2个C.3个D.4个非常感谢上级领导对我的信任,这次安排我向股份公司述职,既是对我履行职责的监督,也是对我个人的关心和爱护,更是对**百联东方商厦有限公司工作的高度重视和支持。B [将

6、展开图还原为几何体(如图),因为四边形ABCD为正方形,E,F分别为PA,PD的中点,所以EF∥AD∥BC,则直线BE与CF共面,①错;因为AF⊂平面PAD,B∉平面PAD,E∈平面PAD,E∉AF,所以BE与AF是异面直线,②正确;因为EF∥AD∥BC,EF⊄平面PBC,BC⊂平面PBC,所以EF∥平面PBC,③正确;平面PAD与平面BCE不一定垂直,④错.故选B.]5.(2017·江西景德镇二模)将图99(1)中的等腰直角三角形ABC沿斜边BC上的中线折起得到空间四面体ABCD(如图99(2)),则在空间四面体ABCD中,AD与B

7、C的位置关系是(  )图99(1)   图99(2)A.相交且垂直B.相交但不垂直C.异面且垂直D.异面但不垂直C [在题图(1)中,AD⊥BC,故在题图(2)中,AD⊥BD,AD⊥DC,又因为BD∩DC=D,所以AD⊥平面BCD,又BC⊂平面BCD,D不在BC上,所以AD⊥BC,且AD与BC异面,故选C.]6.(2017·合肥二模)若平面α截三棱锥所得截面为平行四边形,则该三棱锥中与平面α平行的棱有(  )A.0条B.1条C.2条D.0条或2条C [因为平行于三棱锥的两条相对棱的平面截三棱锥所得的截面是平行四边形,所以该三棱锥中与平

8、面α平行的棱有2条,故选C.]7.(2017·河北唐山3月模拟)已知P是△ABC所在平面外一点,M,N分别是AB,PC的中点,若MN=BC=4,PA=4,则异面直线PA与MN所成角的大小是(  )A.30°B.45°C.

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。