欢迎来到天天文库
浏览记录
ID:31543845
大小:498.50 KB
页数:11页
时间:2019-01-13
《高考数学二轮复习 特色专题训练 专题01 构造函数的通法 理》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、专题01构造函数的通法一、单选题1.设函数f′(x)是奇函数f(x)(x∈R)的导函数,f(-1)=0,当x>0时,xf′(x)-f(x)<0,则使得f(x)>0成立的x的取值范围是( )A.(-∞,-1)∪(0,1)B.(-1,0)∪(1,+∞)C.(-∞,-1)∪(-1,0)D.(0,1)∪(1,+∞)【答案】A考点:函数性质综合应用2.若定义在上的函数满足,其导函数,则下列结论中一定错误的是()A.B.C.D.【答案】C【解析】试题分析:令,则,因此,所以选C.考点:利用导数研究不等式【方法点睛】利用导
2、数解抽象函数不等式,实质是利用导数研究对应函数单调性,而对应函数需要构造.构造辅助函数常根据导数法则进行:如构造,构造非常感谢上级领导对我的信任,这次安排我向股份公司述职,既是对我履行职责的监督,也是对我个人的关心和爱护,更是对**百联东方商厦有限公司工作的高度重视和支持。,构造,构造等3.设定义在(0,+∞)上的函数f(x)满足xf′(x)-f(x)=xlnx,,则f(x)( )A.有极大值,无极小值B.有极小值,无极大值C.既有极大值,又有极小值D.既无极大值,又无极小值【答案】D点睛:根据导函数求原函
3、数,常常需构造辅助函数,一般根据导数法则进行:如构造,构造,构造,构造等4.设函数在上存在导函数,对于任意实数,都有,当时,若,则的取值范围为()A.B.C.D.【答案】C【解析】,设,则为奇函数,又在上是减函数,从而在上是减函数,又,等价于,即,解得,故选C.【方法点睛】利用导数研究函数的单调性、构造函数求参数范围,属于难题.非常感谢上级领导对我的信任,这次安排我向股份公司述职,既是对我履行职责的监督,也是对我个人的关心和爱护,更是对**百联东方商厦有限公司工作的高度重视和支持。联系已知条件和结论,构造辅助
4、函数是高中数学中一种常用的方法,解题中若遇到有关不等式、方程及最值之类问题,设法建立起目标函数,并确定变量的限制条件,通过研究函数的单调性、最值等问题,常可使问题变得明了,准确构造出符合题意的函数是解题的关键;解这类不等式的关键点也是难点就是构造合适的函数,构造函数时往往从两方面着手:①根据导函数的“形状”变换不等式“形状”;②若是选择题,可根据选项的共性归纳构造恰当的函数.5.设定义在R上的函数满足任意都有,且时,,则的大小关系()A.B.C.D.【答案】C6.已知函数在上单调递减,为其导函数,若对任意都有
5、,则下列不等式一定成立的是A.B.C.D.【答案】D非常感谢上级领导对我的信任,这次安排我向股份公司述职,既是对我履行职责的监督,也是对我个人的关心和爱护,更是对**百联东方商厦有限公司工作的高度重视和支持。点睛:本题考查函数的导数与函数单调性的关系,解题的关键是根据题意构造新函数,并利用导数分析的单调性.7.已知定义在上的函数,其导函数为,若,,则不等式的解集是()非常感谢上级领导对我的信任,这次安排我向股份公司述职,既是对我履行职责的监督,也是对我个人的关心和爱护,更是对**百联东方商厦有限公司工作的高度
6、重视和支持。A.B.C.D.【答案】D点睛:利用导数研究函数的单调性,再由单调性来证明不等式是函数、导数、不等式综合中的一个难点,解题技巧是构造辅助函数,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证得不等式,而如何根据不等式的结构特征构造一个可导函数是用导数证明不等式的关键.8.已知定义域为的奇函数的导函数为,当时,,若,,,则,,的大小关系正确的是()A.B.C.D.【答案】D【解析】设h(x)=xf(x),∴h′(x)=f(x)+x•f′(x),∵y=f(x)是定义在实数集R上的奇函数,∴
7、h(x)是定义在实数集R上的偶函数,当x>0时,h'(x)=f(x)+x•f′(x)>0,非常感谢上级领导对我的信任,这次安排我向股份公司述职,既是对我履行职责的监督,也是对我个人的关心和爱护,更是对**百联东方商厦有限公司工作的高度重视和支持。∴此时函数h(x)单调递增.∵a=f()=h(),b=﹣f(﹣1)=f(1)=h(1),c=(ln)f(ln)=h(ln)=h(﹣ln2)=h(ln2),又1>ln2>,∴b>c>a.故答案为:D。9.设定义在R上的函数,对任意的,都有,且,当时,,则不等式的解集为A
8、.B.C.D.【答案】A点睛:本题主要考查导数、函数的性质,考查了转化与化归思想、逻辑推理能力与计算能力.导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,所以在历届高考中,对导数的应用的考查都非常突出,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数.(3
此文档下载收益归作者所有