欢迎来到天天文库
浏览记录
ID:31449909
大小:103.50 KB
页数:4页
时间:2019-01-10
《浅谈学好高中数学》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、浅谈学好高中数学 中图分类号:G633.63文献标识码:A文章编号:1002-7661(2016)03-0054-02 高中数学立体几何一直是数学的一大难点。因为它要求学生有立体感,在一个平面内把几何图形的立体感想象出来。怎样才能学好立体几何呢? 一、具体步骤 (一)要建立空间观念,提高空间想象力 从认识平面图形到认识立体图形是一次飞跃,要有一个过程。有的同学自制一些空间几何模型并反复观察,这有益于建立空间观念,是个好办法。有的同学有空就对一些立体图形进行观察、揣摩,并且判断其中的线线、
2、线面、面面位置关系,探索各种角、各种垂线作法,这对于建立空间观念也是好方法。此外,多用图表示概念和定理,多在头脑中“证明”定理和构造定理的“图”,对于建立空间观念也是很有帮助的。 (二)要掌握基础知识和基本技能4 要用图形、文字、符号三种形式表达概念、定理、公式,要及时不断地复习前面学过的内容。这是因为《立体几何》内容前后联系紧密,前面内容是后面内容的根据,后面内容既巩固了前面的内容,又发展和推广了前面内容。在解题中,要书写规范,如用平行四边形ABCD表示平面时,可以写成平面AC,但不可以把平
3、面两字省略掉;要写出解题根据,不论对于计算题还是证明题都应该如此,不能想当然或全凭直观;对于文字证明题,要写已知和求证,要画图;用定理时,必须把题目满足定理的条件逐一交待清楚,自己心中有数而不把它写出来是不行的。 (三)要不断提高各方面能力 通过联系实际、观察模型或类比平面几何的结论来提出命题;对于提出的命题,不要轻易肯定或否定它,要多用几个特例进行检验,最好做到否定举出反面例子,肯定给出证明。要不断地将所学的内容结构化、系统化。所谓结构化,是指从整体到局部、从高层到低层来认识、组织所学知识,
4、并领会其中隐含的思想、方法。所谓系统化,是指将同类问题如平行的问题、垂直的问题、角的问题、距离的问题、惟一性的问题集中起来,比较它们的异同,形成对它们的整体认识。 二、注意事项 (一)立足课本,夯实基础 直线和平面这些内容,是立体几何的基础,学好这部分的一个捷径就是认真学习定理的证明,尤其是一些很关键的定理的证明。例如:三垂线定理。定理的内容都很简单,就是线与线、线与面、面与面之间的关系的阐述。但定理的证明在初学的时候一般都很复杂,甚至很抽象。掌握好定理有以下三点好处: (1)深刻掌握定理
5、的内容,明确定理的作用是什么,多用在哪些地方,怎么用。 (2)培养空间想象力。 (3)得出一些解题方面的启示。 (二)培养空间想象力4 为了培养空间想象力,可以在刚开始学习时动手制作一些简单的模型用以帮助想象。通过模型中的点、线、面之间的位置关系的观察,逐步培养自己对空间图形的想象能力和识别能力。其次,要培养自己的画图能力。可以从简单的图形(如:直线和平面)、简单的几何体(如:正方体)开始画起。最后要做的就是树立起立体观念,做到能想象出空间图形并把它画在一个平面(如:纸、黑板)上,还要能根
6、据画在平面上的“立体”图形,想象出原来空间图形的真实形状。 (三)逐渐提高逻辑论证能力 立体几何的证明是数学学科中任一分支也替代不了的。论证时,首先要保持严密性,对任何一个定义、定理及推论的理解要做到准确无误。符号表示与定理完全一致,定理的所有条件都具备了,才能推出相关结论。切忌条件不全就下结论。其次,在论证问题时,思考应多用分析法,即逐步地找到结论成立的充分条件,向已知靠拢,然后用综合法形式写出。 (四)“转化”思想的应用 我个人觉得,解立体几何的问题,主要是充分运用“转化”这种数学思想
7、,要明确在转化过程中什么变了,什么没变,有什么联系,这是非常关键的。例如: 1.两条异面直线所成的角转化为两条相交直线的夹角即过空间任意一点引两条异面直线的平行线。 2.异面直线的距离可以转化为直线和与它平行的平面间的距离,也可以转化为两平行平面的距离,即异面直线的距离与线面距离、面面距离三者可以相互转化。4 3.面和面平行可以转化为线面平行,线面平行又可转化为线线平行。而线线平行又可以由线面平行或面面平行得到,它们之间可以相互转化。 (五)总结规律,规范训练 立体几何解题过程中,常有明
8、显的规律性。例如:求角先定平面角、三角形去解决,正余弦定理、三角定义常用,若是余弦值为负值,异面、线面取锐角。对距离可归纳为:距离多是垂线段,放到三角形中去计算,经常用正余弦定理、勾股定理,若是垂线难做出,用等积等高来转换。不断总结,才能不断高。 此外,还要注重规范训练,高考中反映的这方面的问题十分严重,不少考生对作、证、求三个环节交待不清,表达不够规范、严谨,因果关系不充分,图形中各元素关系理解错误,符号语言不会运用等。 (六)典型结论的应用 在平时的学习过程中,对于证明过
此文档下载收益归作者所有