资源描述:
《初中数学第22章[x]与{x}竞赛专题复习》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、初中数学第22章[x]与{x}竞赛专题复习第22章与22.1.1★求的值.解析因为所以.故.22.1.2★若是正整数,求的值.解析因为所以,所以.22.1.13★数的末尾有多少个连续的零?解析的质因数分解式中,5的最高次方幕为所以的末尾有499个零.评注在中,质数的最高次幕是其中,且.22.1.4*★设,求.解析要求,只需证明介于两个连续的整数之间.所以需要对进行适当的变形,通过放大、缩小的手段求出的范围,从而确定的取值.由题设知,.考虑到,2,3,4,…,2007,可以得到所以.评注上述解题过程中,首先对进行了“放缩”,又通过“拆项”的方法使和式中前后两项
2、能够相互抵消一部分,使和式化简,从而得到了的范围.在对和式取整时,利用和式本身的性质进行“缩放”的方法非常重要,需要在平时的学习中多积累一些和式的性质以及变形技巧.22.1.5★★计算和式的值.解析因为(23,101)=1,所以,当时,都不是整数,即都不为零.又因为二23,而,且是整数,所以9则.从而,可以把,,…,首尾配对,共配成50对,每一对的和为22,所以22.1.6*★已知,且满足,求的值.解析因为,所以,,…,等于0或者1.由题设知,其中有18个等于1,所以所以,故,于是,所以.22.1.7★★求满足的所有实数的和.解析原方程可化为,所以,可得,于
3、是101,102,•••,125,从而,满足条件的实数为它们的和为22.1.8*★已知,如果要求是正整数,求满足条件所有实数的和.解析显然,,2003是质数,,设,由题设,是整数,.,1,2,3,…,2002.和22.1.9★解方程.解析原方程可改写为9将其代人,可得解此不等式组,有9即,所以.将代入原方程,得所以,原方程的解是.评注若一次方程中同时出现和的一次项,可以通过以下的步骤进行求解:(1)从方程中解出或,分别代入不等式组或,求解后得到或的范围,从而求得的“可能取值”(注意不一定是解!)•(2)将这些“可能值”代人原方程进行求解.(3)检验.因为在(
4、1)中将或代人不等式组,实际上是“放大”了的范围,所以必须验根!22.1.10★解方程:.解析设,则为整数,且,①由原方程知,即.②即.所以,或.代入②,得,•22.1.□★★解方程:.解析由原方程可化为,代入不等式组,有整理后得到.当时,因为,所以,即,所以,与矛盾.当时,因为,所以,即.又因为,所以.所以,故.代入原方程,得.22.1.12*★解方程.解析这是一个关于的二次方程,如果从方程中解出或,并代入不等式组将会使问题复杂化.可以利用的性质,通过建立不等关系缩小的取值范围,从而得到的可能取值.由原方程知,.因为,所以将和分别代入中,得到不等式组即所以
5、或,2,6,7,8.代入原方程得,得,,,.经检验知,,,,均为原方程的解.22.1.13*★已知、、满足:对于数,表示不大于的最大整数,.求、、的值.解析首先注意到,对于任意有理数,,所以.①+②+③得9即.④④一①得到,从而,;④一②得到,从而,;④一③得到,因此…故…22.1.14ilc★解方程(其中表示不超过的最大整数).解析若是整数,贝4于是非零整数都是原方程的解.若不是整数,贝由题设得所以.设,则…代入上式得当时,,这样的整数不存在.当时,,只有整数满足,此时.于是综上所述,原方程的解为所有非零整数和一9.9.22.1.15^★证明:对于任意实数
6、,有解析设,其中,则有…当时,,,所以99于是.当时所以于是.所以,对于任意实数,恒成立.说明本题中的等式有更为一般的形式:对任意实数,有9其中为大于1的一切正整数.这个等式称为埃尔米特(Herite)恒等式.22.1.16*★设、为正整数,,求证:解析设为整数,且,则有两边同时叠加,得到所以评注对任意实数,有(请读者自证)22.1.★★如果是正整数,求证:解析任意正整数,总存在正整数,满足,不妨设,其中.(1)当时,即.则・①又因为,所以•②由①、②式,得,所以.另一方面,即.故当时,等式成立.(2)当时,则.③又因为所以所以.④由③、④式,得■另一方面,
7、所以.故当时,等式亦成立.综上所述,原等式成立.22.1.18>★设、、是正实数,求的最小值.解析对于实数,有,所以由于是整数,所以.当,,时,.故的最小值为4・22.1.19>★在1,2,…,2005这2005个正整数中,有多少个可以表示成的形式,其中是正实数.(这里表示不超过的最大整数.)解析令,贝U,于是,因为,所以,令,则可以表示数,,…,.由于,,所以,欲求的数的个数为■22.1.20**★将正整数中所有被4整除以及被4除余1的数全部删去,剩下的数依照从小到大的顺序排成一个数列:2,3,6,7,10,11,数列的前项之和记为,其中1,2,3,….求
8、的值.(其中表示不超过的最大整数)解析易知,,,2,