欢迎来到天天文库
浏览记录
ID:30977181
大小:136.50 KB
页数:5页
时间:2019-01-05
《高考数学二轮复习上篇专题整合突破专题四立体几何练习文》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、我们在这里,召开私营企业家联谊会,借此机会,我代表成都市渝中工商局、渝中区私营企业协会,祝各位领导新年快乐、工作愉快、身体健康,祝各位企业家事业兴旺专题四立体几何练习文一、填空题1.(2016·浙江卷改编)已知互相垂直的平面α,β交于直线l,且直线m,n满足m∥α,n⊥β,给出下列结论:①m∥l;②m∥n;③n⊥l;④m⊥n.则上述结论正确的是________(填序号).解析 由已知,α∩β=l,∴l⊂β,又∵n⊥β,∴n⊥l,③正确.答案 ③2.已知圆柱的底面半径为1,母线长与底面的直径相等,则该圆柱的表面积为________.解析 利
2、用圆柱的侧面积公式求解,该圆柱的侧面积为2π×1×2=4π,一个底面圆的面积是π,所以该圆柱的表面积为4π+2π=6π.答案 6π3.(2016·徐州、宿迁、连云港模拟)已知圆锥的母线长为10cm,侧面积为60πcm2,则此圆锥的体积为________cm3.解析 设圆锥底面圆的半径为r,母线为l,则侧面积πrl=10πr=60π,解得r=6,则高h==8,则此圆锥的体积为πr2h=π×36×8=96π.答案 96π4.如图所示,ABCD是正方形,PA⊥平面ABCD,E,F分别是AC,PC的中点,PA=2,AB=1,求三棱锥C-PED的体
3、积为________.解析 ∵PA⊥平面ABCD,∴PA是三棱锥P-CED的高,PA=2.∵ABCD是正方形,E是AC的中点,∴△CED是等腰直角三角形.AB=1,故CE=ED=,S△CED=CE·ED=··=.故VCPED=VPCED=·S△CED·PA=··2=.答案 5.如图,正方体ABCDA1B1C1D1中,AB=2,点E为AD的中点,点F在CD上,若EF∥平面AB1C,则线段EF的长度等于________.解析 ∵EF∥平面AB1C,EF⊂平面ABCD,认真组织会员学习,及时将党的路线、方针、政策,及时将新的法律和规章,传达到会
4、员,协会编印了《会员之家》宣传资料共四期我们在这里,召开私营企业家联谊会,借此机会,我代表成都市渝中工商局、渝中区私营企业协会,祝各位领导新年快乐、工作愉快、身体健康,祝各位企业家事业兴旺平面ABCD∩平面AB1C=AC,∴EF∥AC,又∵E是AD的中点,∴F是CD的中点,即EF是△ACD的中位线,∴EF=AC=×2=.答案 6.(2016·镇江高三期末)设b,c表示两条直线,α,β表示两个平面,现给出下列命题:①若b⊂α,c∥α,则b∥c;②若b⊂α,b∥c,则c∥α;③若c∥α,α⊥β,则c⊥β;④若c∥α,c⊥β,则α⊥β.其中正确
5、的命题是________(写出所有正确命题的序号).解析 ①中直线b,c平行或异面,则①错误;②中c∥α或c⊂α,则②错误;③中c,β的位置关系可能平行、相交或者直线在平面上,则③错误;由线面平行的性质、线面垂直的性质、面面垂直的判定定理可知④正确,故正确命题是④.答案 ④7.(2016·苏、锡、常、镇调研)设棱长为a的正方体的体积和表面积分别为V1,S1,底面半径和高均为r的圆锥的体积和侧面积分别为V2,S2,若=,则的值为________.解析 棱长为a的正方体的体积V1=a3,表面积S1=6a2,底面半径和高均为r的圆锥的体积V2=
6、πr3,侧面积S2=πr2,则==,则a=r,所以==.答案 8.(2016·无锡高三期末)如图,在圆锥VO中,O为底面圆心,半径OA⊥OB,且OA=VO=1,则O到平面VAB的距离为________.解析 由题意可得三棱锥V-AOB的体积为V三棱锥V-AOB=S△AOB·VO=.△VAB是边长为的等边三角形,其面积为×()2=,设点O到平面VAB的距离为h,则V三棱锥O-VAB=认真组织会员学习,及时将党的路线、方针、政策,及时将新的法律和规章,传达到会员,协会编印了《会员之家》宣传资料共四期我们在这里,召开私营企业家联谊会,借此机会,
7、我代表成都市渝中工商局、渝中区私营企业协会,祝各位领导新年快乐、工作愉快、身体健康,祝各位企业家事业兴旺S△VAB·h=×h=V三棱锥V-AOB=,解得h=,即点O到平面VAB的距离是.答案 二、解答题9.(2014·江苏卷)如图,在三棱锥PABC中,D,E,F分别为棱PC,AC,AB的中点.已知PA⊥AC,PA=6,BC=8,DF=5.求证:(1)直线PA∥平面DEF;(2)平面BDE⊥平面ABC.证明 (1)因为D,E分别为棱PC,AC的中点,所以DE∥PA.又因为PA⊄平面DEF,DE⊂平面DEF,所以直线PA∥平面DEF.(2)因
8、为D,E,F分别为棱PC,AC,AB的中点,PA=6,BC=8,所以DE∥PA,DE=PA=3,EF=BC=4.又因为DF=5,故DF2=DE2+EF2,所以∠DEF=90°,即DE⊥EF.又
此文档下载收益归作者所有