欢迎来到天天文库
浏览记录
ID:30976902
大小:14.41 MB
页数:44页
时间:2019-01-05
《高考数学二轮复习上篇专题整合突破专题一函数与导数不等式第3讲导数与函数的单调性极值最值问题课件理》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第3讲 导数与函数的单调性、极值、最值问题高考定位高考对本内容的考查主要有:(1)导数的运算是导数应用的基础,要求是B级,熟练掌握导数的四则运算法则、常用导数公式,一般不单独设置试题,是解决导数应用的第一步;(2)利用导数研究函数的单调性与极值是导数的核心内容,要求是B级,对应用导数研究函数的单调性与极值要达到相等的高度.真题感悟考点整合1.导数与函数的单调性(1)函数单调性的判定方法:设函数y=f(x)在某个区间内可导,如果f′(x)>0,则y=f(x)在该区间为增函数;如果f′(x)<0,则y=f(x)在该区
2、间为减函数.(2)函数单调性问题包括:①求函数的单调区间,常常通过求导,转化为解方程或不等式,常用到分类讨论思想;②利用单调性证明不等式或比较大小,常用构造函数法.2.极值的判别方法当函数f(x)在点x0处连续时,如果在x0附近的左侧f′(x)>0,右侧f′(x)<0,那么f(x0)是极大值;如果在x0附近的左侧f′(x)<0,右侧f′(x)>0,那么f(x0)是极小值.也就是说x0是极值点的充分条件是点x0两侧导数异号,而不是f′(x)=0.此外,函数不可导的点也可能是函数的极值点,而且极值是一个局部概念,极值
3、的大小关系是不确定的,即有可能极大值比极小值小.3.闭区间上函数的最值在闭区间上连续的函数,一定有最大值和最小值,其最大值是区间的端点处的函数值和在这个区间内函数的所有极大值中的最大者,最小值是区间端点处的函数值和在这个区间内函数的所有极小值中的最小者.探究提高讨论函数的单调性其实质就是讨论不等式的解集的情况.大多数情况下,这类问题可以归结为一个含有参数的一元二次不等式的解集的讨论,常需依据以下标准分类讨论:(1)二次项系数为0、为正、为负,目的是讨论开口方向;(2)判别式的正负,目的是讨论对应二次方程是否有解;
4、(3)讨论两根差的正负,目的是比较根的大小;(4)讨论两根与定义域的关系,目的是根是否在定义域内.另外,需优先判断能否利用因式分解法求出根.[微题型2]已知函数的单调区间求参数范围【例1-2】已知a∈R,函数f(x)=(-x2+ax)ex(x∈R,e为自然对数的底数).(1)当a=2时,求函数f(x)的单调递增区间;(2)若函数f(x)在(-1,1)上单调递增,求a的取值范围;(3)函数f(x)是否为R上的单调函数?若是,求出a的取值范围?若不是,请说明理由.(2)因为函数f(x)在(-1,1)上单调递增,所以f
5、′(x)≥0对x∈(-1,1)都成立.因为f′(x)=(-2x+a)ex+(-x2+ax)ex=[-x2+(a-2)x+a]ex,所以[-x2+(a-2)x+a]ex≥0对x∈(-1,1)都成立.(3)若函数f(x)在R上单调递减,则f′(x)≤0对x∈R都成立,即[-x2+(a-2)x+a]ex≤0对x∈R都成立.因为ex>0,所以x2-(a-2)x-a≥0对x∈R都成立.所以Δ=(a-2)2+4a≤0,即a2+4≤0,这是不可能的.故函数f(x)不可能在R上单调递减.若函数f(x)在R上单调递增,则f′(x)
6、≥0对x∈R都成立,即[-x2+(a-2)x+a]ex≥0对x∈R都成立,因为ex>0,所以x2-(a-2)x-a≤0对x∈R都成立.而Δ=(a-2)2+4a=a2+4>0,故函数f(x)不可能在R上单调递增.综上,可知函数f(x)不可能是R上的单调函数.探究提高(1)已知函数的单调性,求参数的取值范围,应用条件f′(x)≥0(或f′(x)≤0),x∈(a,b)恒成立,解出参数的取值范围(一般可用不等式恒成立的理论求解),应注意参数的取值是f′(x)不恒等于0的参数的范围.(2)可导函数f(x)在某个区间D内单调
7、递增(或递减),转化为恒成立问题时,常忽视等号这一条件,导致与正确的解法擦肩而过,注意,这里“=”一定不能省略.解(1)当a=0时,f(x)=x-xlnx,f′(x)=-lnx,所以f(e)=0,f′(e)=-1.所以曲线y=f(x)在点(e,f(e))处的切线方程为y=-x+e,即x+y-e=0.热点二 利用导数研究函数的极值【例2】(2016·苏、锡、常、镇调研)设函数f(x)=x-2ex-k(x-2lnx)(k为实常数,e=2.71828…是自然对数的底数).(1)当k=1时,求函数f(x)的最小值;(2)
8、若函数f(x)在(0,4)内存在三个极值点,求k的取值范围.探究提高极值点的个数,一般是使f′(x)=0方程根的个数,一般情况下导函数若可以化成二次函数,我们可以利用判别式研究,若不是,我们可以借助导函数的性质及图象研究.【训练2】设函数f(x)=ax3-2x2+x+c.(1)当a=1,且函数图象过(0,1)时,求函数的极小值;(2)若f(x)在R上无极值点,求a的取值范
此文档下载收益归作者所有