欢迎来到天天文库
浏览记录
ID:30935258
大小:926.50 KB
页数:18页
时间:2019-01-04
《高考数学大一轮复习 第八章 立体几何 8_2 简单几何体的面积与体积教师用书 文 北师大版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、“讲忠诚、严纪律、立政德”三者相互贯通、相互联系。忠诚是共产党人的底色,纪律是不能触碰的底线,政德是必须修炼的素养。永葆底色、不碰底线2018版高考数学大一轮复习第八章立体几何8.2简单几何体的面积与体积教师用书文北师大版1.多面体的表面积、侧面积因为多面体的各个面都是平面,所以多面体的侧面积就是所有侧面的面积之和,表面积是侧面积与底面面积之和.2.圆柱、圆锥、圆台的侧面展开图及侧面积公式圆柱圆锥圆台侧面展开图侧面积公式S圆柱侧=2πrlS圆锥侧=πrlS圆台侧=π(r1+r2)l3.柱、锥、台和球的表面积和体积名称几何体 表面积体积柱体(棱柱和圆柱)S表
2、面积=S侧+2S底V=Sh锥体(棱锥和圆锥)S表面积=S侧+S底V=Sh台体(棱台和圆台)S表面积=S侧+S上+S下V=(S上+S下+)h球S=4πR2V=πR3【知识拓展】1.与体积有关的几个结论政德才能立得稳、立得牢。要深入学习贯彻习近平新时代中国特色社会主义思想特别是习近平总书记关于“立政德”的重要论述,深刻认识新时代立政德的重要性和紧迫性。“讲忠诚、严纪律、立政德”三者相互贯通、相互联系。忠诚是共产党人的底色,纪律是不能触碰的底线,政德是必须修炼的素养。永葆底色、不碰底线(1)一个组合体的体积等于它的各部分体积的和或差.(2)底面面积及高都相等的两
3、个同类几何体的体积相等.2.几个与球有关的切、接常用结论(1)正方体的棱长为a,球的半径为R,①若球为正方体的外接球,则2R=a;②若球为正方体的内切球,则2R=a;③若球与正方体的各棱相切,则2R=a.(2)若长方体的同一顶点的三条棱长分别为a,b,c,外接球的半径为R,则2R=.(3)正四面体的外接球与内切球的半径之比为3∶1.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)多面体的表面积等于各个面的面积之和.( √ )(2)锥体的体积等于底面积与高之积.( × )(3)球的体积之比等于半径比的平方.( × )(4)简单组合体的体积
4、等于组成它的简单几何体体积的和或差.( √ )(5)长方体既有外接球又有内切球.( × )(6)圆柱的一个底面积为S,侧面展开图是一个正方形,那么这个圆柱的侧面积是2πS.( × )1.(教材改编)已知圆锥的表面积等于12πcm2,其侧面展开图是一个半圆,则底面圆的半径为( )A.1cmB.2cmC.3cmD.cm答案 B解析 S表=πr2+πrl=πr2+πr·2r=3πr2=12π,∴r2=4,∴r=2cm.2.(2015·陕西)一个几何体的三视图如图所示,则该几何体的表面积为( )政德才能立得稳、立得牢。要深入学习贯彻习近平新时代中国特色社会主义
5、思想特别是习近平总书记关于“立政德”的重要论述,深刻认识新时代立政德的重要性和紧迫性。“讲忠诚、严纪律、立政德”三者相互贯通、相互联系。忠诚是共产党人的底色,纪律是不能触碰的底线,政德是必须修炼的素养。永葆底色、不碰底线A.3πB.4πC.2π+4D.3π+4答案 D解析 由三视图可知原几何体为半圆柱,底面半径为1,高为2,则表面积为S=2×π×12+×2π×1×2+2×2=π+2π+4=3π+4.3.(2016·全国甲卷)体积为8的正方体的顶点都在同一球面上,则该球面的表面积为( )A.12πB.πC.8πD.4π答案 A解析 由题意可知正方体的棱长为
6、2,其体对角线2即为球的直径,所以球的表面积为4πR2=(2R)2π=12π,故选A.4.《九章算术》商功章有题:一圆柱形谷仓,高1丈3尺3寸,容纳米2000斛(1丈=10尺,1尺=10寸,斛为容积单位,1斛≈1.62立方尺,π≈3),则圆柱底面圆周长约为( )A.1丈3尺B.5丈4尺C.9丈2尺D.48丈6尺答案 B解析 设圆柱底面半径为r尺,高为h尺,依题意,圆柱体积为V=πr2h=2000×1.62≈3×r2×13.33,所以r2≈81,即r≈9,所以圆柱底面圆周长为2πr≈54,54尺=5丈4尺,即圆柱底面圆周长约为5丈4尺,故选B.5.如图,三
7、棱柱ABC-A1B1C1的体积为1,P为侧棱B1B上的一点,则四棱锥P-ACC1A1的体积为______.政德才能立得稳、立得牢。要深入学习贯彻习近平新时代中国特色社会主义思想特别是习近平总书记关于“立政德”的重要论述,深刻认识新时代立政德的重要性和紧迫性。“讲忠诚、严纪律、立政德”三者相互贯通、相互联系。忠诚是共产党人的底色,纪律是不能触碰的底线,政德是必须修炼的素养。永葆底色、不碰底线答案 解析 设点P到平面ABC,平面A1B1C1的距离分别为h1,h2,则棱柱的高为h=h1+h2,又记S=S△ABC=,则三棱柱的体积为V=Sh=1.而从三棱柱中去掉四
8、棱锥P-ACC1A1的剩余体积为V′=VP-ABC+=Sh1+Sh
此文档下载收益归作者所有