知识讲解解三角形应用举例基础

知识讲解解三角形应用举例基础

ID:30183562

大小:251.04 KB

页数:8页

时间:2018-12-27

知识讲解解三角形应用举例基础_第1页
知识讲解解三角形应用举例基础_第2页
知识讲解解三角形应用举例基础_第3页
知识讲解解三角形应用举例基础_第4页
知识讲解解三角形应用举例基础_第5页
资源描述:

《知识讲解解三角形应用举例基础》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、解三角形应用举例编稿:张希勇审稿:李霞【学习目标】1.能够利用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的问题;2.提高运用所学知识解决实际问题的能力,并初步掌握数学建模的思想方法;3.掌握运用正弦定理、余弦定理解决几何计算问题的方法.【要点梳理】要点一、解三角形应用题的步骤解三角形在实际中应用非常广泛,如测量、航海、几何、物理等方面都要用到解三角形的知识,解题时应认真分析题意,并做到算法简练,算式工整,计算正确.其解题的一般步骤是:(1)准确理解题意,尤其要理解应用题中的有关名词和术语;明确已知和所求,理清量与量之间的关系;(2)根据题意画出示意图,并将已

2、知条件在图形中标出,将实际问题抽象成解三角形模型;(3)分析与所研究的问题有关的一个或几个三角形,正确运用正弦定理和余弦定理,有顺序的求解;(4)将三角形的解还原为实际问题,注意实际问题中的单位及近似计算要求,回答实际问题.要点诠释:要点二、解三角形应用题的基本思路实际问题画图数学问题解三角形数学问题的解检验实际问题的解要点三、实际问题中的一些名词、术语仰角和俯角与目标视线在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方时叫仰角,目标视线在水平视线下方时叫俯角,如图所示:坡角和坡度坡面与地平面所成的角度,叫做坡角;坡面的铅直高度和水平宽度的比叫做坡度或者坡

3、比,常用字母i表示。坡比是坡角的正切值。方位角与方向角:方位角:一般指正北方向线顺时针到目标方向线的水平角。方位角的取值范围为0°~360°。如图,点的方位角是。方向角:一般是指以观测者的位置为中心,将正北或正南方向作为起始方向旋转到目标的方向线所成的角(一般指锐角),通常表达成北(南)偏东(西)多少度。如图为南偏西方向(指以正南方向为始边,向正西方向旋转);如图为北偏东方向(指从正北开始向正东方向旋转).东南方向:指经过目标的射线是正东与正南的夹角平分线.依此可类推西南方向、西北方向等;要点四、解三角形应用中的常见题型正弦定理和余弦定理解三角形的常见题型有:1.测量距离问

4、题:这类问题的情景一般属于“测量有障碍物相隔的两点间的距离”,在测量过程中,要根据实际需要选取合适的基线长度,测量工具要有较高的精确度.2.测量高度问题:这类问题的情景属于“测量底(顶)部不能到达的物体的高度”.测量过程中,要注意选取适量不同的测量点,使测量有较高的精确度.3.测量角度问题:这类问题的情景属于“根据需要,对某些物体定位”.测量数据越精确,定位精度越高【典型例题】类型一:距离问题例1.如图,设A、B两点在河的两岸,要测量两点之间的距离,测量者在A的同侧,在所在的河岸边选定一点C,测出AC的距离是42m,BAC=,ACB=。求A、B两点的距离.【思路点拨】这是一

5、道关于研究两个不可到达的点之间的距离测量问题。题目条件告诉了边CD的长以及以C、D为顶点的四个角,根据三角形的内角和定理和正弦定理很容易算出AC、AD、BC或BD;然后选择恰当的三角形,再利用余弦定理可以计算出AB的距离。【解析】根据正弦定理,得,∴答:A、B两点间的距离为.【总结升华】1.此题虽为解三角形问题的简单应用,但关键是把未知边所处的三角形找到,在转换过程中应注意排除题目中非数学因素的干扰,将数量关系从题目准确地提炼出来.2.解三角形的应用题时,通常会遇到两种情况:(1)已知量与未知量全部集中在一个三角形中,依次利用正弦定理或余弦定理解之。(2)已知量与未知量涉及

6、两个或几个三角形,这时需要选择条件足够的三角形优先研究,再逐步在其余的三角形中求出问题的解。3.在研究三角形时,灵活根据两个定理可以寻找到多种解决问题的方案,但有些过程较繁复,如何找到最优的方法,最主要的还是分析两个定理的特点,结合题目条件来选择最佳的计算方式。举一反三:【变式】为了开凿隧道,要测量隧道上D、E间的距离,为此在山的一侧选取适当点C,如图,测得CA=400m,CB=600m,∠ACB=60°,又测得A、B两点到隧道口的距离AD=80m,BE=40m(A、D、E、B在一条直线上),计算隧道DE的长.【答案】在△ABC中,CA=400m,CB=600m,∠ACB=

7、60°,由余弦定理得∴∴答:隧道长约为409.2m.类型二:高度问题【高清课堂:解三角形应用举例377493例2】例2.某人在塔的正东沿着南偏西的方向前进40米后,望见塔在东北方向,若沿途测得塔的最大仰角为,求塔高.【思路点拨】画出空间图形后,先寻找可解的三角形,进而解目标所在三角形。【解析】如图所示,过B做于点E,由题意知在E点测得塔的最大仰角,在.由正弦定理,得∴在中,∴在中,∴(米)故所求塔高为米【总结升华】注意仰角的概念。举一反三:【变式1】如图,在山顶铁塔上B处测得地面上一点A的俯角,在塔底C处测得A处的

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。