资源描述:
《高中数学 第二章 平面向量 2.2.2 向量减法运算及其几何意义课后习题 新人教a版必修4》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2.2.2 向量减法运算及其几何意义1.(2016·广东揭阳惠来一中检测)化简的结果是( ) A.0B.2C.-2D.2解析:根据平面向量的加法与减法运算法则,得=()-=0.答案:A2.可以写成:①;②;③;④.其中正确的是( )A.①②B.②③C.③④D.①④解析:由向量加法的三角形法则知,,故①正确.由向量减法的三角形法则知,,故④正确.答案:D3.(2016·陕西渭南阶段性测试)已知正方形ABCD的边长为1,则
2、
3、+
4、
5、=( )A.4B.2C.D.2解析:∵正方形ABCD的边长为1,∴
6、
7、+
8、
9、
10、=
11、
12、+
13、
14、=2.故选D.答案:D4.如图,P,Q是△ABC的边BC上的两点,且,则化简的结果为( )A.0B.C.D.解析:=()+()==0.答案:A5.化简以下各式:①; ②;③.结果为零向量的个数是( )A.1B.2C.3D.0解析:①=0;②=()-()==0;③=()-=0.答案:C6.已知=a,=b,若
15、
16、=12,
17、
18、=5,且∠AOB=90°,则
19、a-b
20、的值为 . 解析:OA,OB,AB构成了一个直角三角形,则
21、a-b
22、==13.答案:137.如图,在△ABC中,若D是边BC的中点,E是边AB上一点,则
23、= . 解析:,因为=0,所以=0.答案:08.如图,已知O为平行四边形ABCD内一点,=a,=b,=c,则= . 解析:由已知,则=a+c-b.答案:a+c-b9.如图,在正六边形ABCDEF中,与相等的向量有 . ①;②;③;④;⑤;⑥;⑦.解析:因为四边形ACDF是平行四边形,所以.因为四边形ABDE是平行四边形,所以.综上知与相等的向量是①④.答案:①④10.导学号08720051若O是△ABC所在平面内一点,且满足
24、
25、=
26、
27、,试判断△ABC的形状.解:∵,又
28、
29、=
30、
31、,∴
32、
33、=
34、
35、,∴以AB,
36、AC为邻边的平行四边形的两条对角线的长度相等,∴此平行四边形为矩形,∴AB⊥AC,∴△ABC是直角三角形.11.如图,已知正方形ABCD,=a,=b,=c,试作向量:(1)a+b+c;(2)a-b+c.作法:(1)由已知得a+b=,又=c,所以延长AC至E,使
37、
38、=
39、
40、,则a+b+c=,如图所示.(2)延长DC到点F,使
41、
42、=
43、
44、,则,则a-b=,a-b+c=.如图所示.12.导学号08720052已知△ABC是等腰直角三角形,∠ACB=90°,M是斜边AB的中点,=a,=b.求证:(1)
45、a-b
46、=
47、a
48、;(2)
49、a+(a-b)
50、=
51、
52、b
53、.证明:在等腰直角三角形ABC中,由M是斜边AB的中点,得
54、
55、=
56、
57、,
58、
59、=
60、
61、.(1)在△ACM中,=a-b.于是由
62、
63、=
64、
65、,得
66、a-b
67、=
68、a
69、.(2)在△MCB中,=a-b,所以=a-b+a=a+(a-b).从而由
70、
71、=
72、
73、,得
74、a+(a-b)
75、=
76、b
77、.