欢迎来到天天文库
浏览记录
ID:29769547
大小:48.51 KB
页数:8页
时间:2018-12-23
《数学(理科)考试大纲的说明(广东卷》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、2011数学(理科)考试大纲的说明(广东卷)二、考试范围与要求 (一)必考内容与要求 1.集合 (1)集合的含义与表示 ①了解集合的含义、元素与集合的“属于”关系. ②能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题. (2)集合间的基本关系 ①理解集合之间包含与相等的含义,能识别给定集合的子集. ②在具体情境中,了解全集与空集的含义. (3)集合的基本运算 ①理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集. ②理解在给定集合中一个
2、子集的补集的含义,会求给定子集的补集. ③能使用韦恩(Venn)图表达集合的关系及运算. 2.函数概念与基本初等函数Ⅰ(指数函数、对数函数、幂函数) (1)函数 ①了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念. ②在实际情境中,会根据不同的需要选择恰当的方法(如图像法、列表法、解析法)表示函数. ③了解简单的分段函数,并能简单应用. ④理解函数的单调性、最大值、最小值及其几何意义;结合具体函数,了解函数奇偶性的含义. ⑤会运用函数图像理解和研究函数的性质. (2)
3、指数函数 ①了解指数函数模型的实际背景. ②理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算. ③理解指数函数的概念,理解指数函数的单调性,掌握指数函数图像通过的特殊点. (3)对数函数 ①理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用. ②理解对数函数的概念,理解对数函数的单调性,掌握对数函数图像通过的特殊点. ③了解指数函数与对数函数互为反函数 (4)幂函数 ①了解幂函数的概念. ②结合函数的图像,了解它
4、们的变化情况. (5)函数与方程 ①8结合二次函数的图像,了解函数的零点与方程根的联系,判断一元二次方程根的存在性及根的个数. ②根据具体函数的图像,能够用二分法求相应方程的近似解. (6)函数模型及其应用 ①了解指数函数、对数函数以及幂函数的增长特征,知道直线上升、指数增长、对数增长等不同函数类型增长的含义. ②了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用. 3.立体几何初步 (1)空间几何体 ①认识柱、锥、台、球及其简单组合体的结
5、构特征,并能运用这些特征描述现实生活中简单物体的结构. ②能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述的三视图所表示的立体模型,会用斜二测法画出它们的直观图. ③会用平行投影与中心投影两种方法,画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式. ④会画某些建筑物的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求). ⑤了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式). (2)点、直线、平面之间的位置关系 ①理解空间直线、平面位置关系的
6、定义,并了解如下可以作为推理依据的公理和定理. ◆公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点在此平面内. ◆公理2:过不在同一条直线上的三点,有且只有一个平面. ◆公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线. ◆公理4:平行于同一条直线的两条直线互相平行. ◆定理:空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补. ②以立体几何的上述定义、公理和定理为出发点,认识和理解空间中线面平行、垂直的有关性质与判定定理. 理解以下判定定
7、理. ◆如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行. ◆如果一个平面内的两条相交直线与另一个平面都平行,那么这两个平面平行. ◆如果一条直线与一个平面内的两条相交直线都垂直,那么该直线与此平面垂直. ◆如果一个平面经过另一个平面的垂线,那么这两个平面互相垂直. 理解以下性质定理,并能够证明. ◆如果一条直线与一个平面平行,那么经过该直线的任一个平面与此平面的交线和该直线平行. ◆如果两个平行平面同时和第三个平面相交,那么它
此文档下载收益归作者所有