欢迎来到天天文库
浏览记录
ID:29663942
大小:91.50 KB
页数:4页
时间:2018-12-21
《(秋)期八年级数学上册7.5三角形的内角和定理第1课时三角形内角和定理教案新版北师大版 》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、5三角形内角和定理第1课时三角形内角和定理【知识与技能】学会用逻辑推理的方法对三角形的内角和定理重新研究证明,并能利用三角形的内角和解决有关问题.【过程与方法】感受探索三角形内角和定理的证明过程,培养学生有条理地思考问题和合乎情理地表达问题的能力.通过渗透“化归”的数学思想,培养学生解决数学问题的基本方法.【情感态度】通过师生共同探究活动确认“三角形内角和是180°”,培养学生的概括、总结能力,激发学生探索问题的兴趣和体会学习数学的价值.【教学重点】三角形内角和定理的证明和利用三角形内角和进行有关的
2、证明与计算.【教学难点】用不同的方法证明三角形内角和定理.一、创设情境,导入新课我们知道,任意一个三角形的内角和等于180°,怎样证明这个结论的正确性呢?小学中我们通过测量的方法进行过验证,但我们不可能对所有的三角形进行验证,有没有一种能证明任意三角形的内角和等于180°的方法呢?【教学说明】通过问题引入,激发学生的学习兴趣,同时使学生认识到,测量的方法只能进行有限次的验证,并不能对所有三角形进行验证,所以必须寻找一种能说明所有三角形的内角和是180°的方法,为后面的证明做准备.二、思考探究,获取新
3、知三角形内角和定理的证明.思考:(1)如图,如果我们只把∠A移到了∠1的位置,你能证明这个结论吗?如果不移动∠A,那么你还有什么方法可以达到同样的效果?(2)根据前面给出的基本事实和定理,你能用自己的语言说说这一结论的证明思路吗?你能用比较简洁的语言写出这一证明过程吗?与同学们交流.【教学说明】使学生从对三角形内角和的感性认识上升到理性认识,由于学生刚刚接触证明,并且还需添加辅助线,所以教师必须要有规范的示范,通过讲练结合,使学生逐步掌握推理的方法步骤.【归纳结论】三角形的内角和等于180°.思考:
4、(1)你还能用其他方法证明三角形内角和定理吗?(2)如果把三角形三个角“凑”到A处,过点A作直线PQ∥BC(如图),他的想法可行吗?如果可行,你能写出证明过程吗?与同学们交流.【教学说明】让学生尝试模仿用另外的方法证明三角形内角和是180°,从而培养学生多角度分析问题和解决问题的能力,学生的推理能力和证明方法再次得到深化.运用所学的知识,你能解决下面的问题吗?例如图,在△ABC中,∠B=38°,∠C=62°,AD是△ABC的角平分线,求∠ADB的度数.【教学说明】通过例题,要让学生体会三角形内角和定
5、理在角的求值问题中的应用.注意向学生分析解决问题的思路和方法.三、运用新知,深化理解1.在△ABC中,∠A=80°,∠B-∠C=40°,则∠C=.2.∠A=∠B+∠C,则这个三角形是.3.直角三角形两锐角的平分线相交所成的角的度数为()A.45°B.135°C.45°或135°D.都不对4.若△ABC的一个内角是另一个内角的23,也是第三个内角的45,则它的三个内角的度数为()A.30°,60°,90°B.40°,60°,80°C.48°,52°,80°D.48°,72°,60°5.如图,AD、AE
6、分别为△ABC的高线和角平分线,且∠B=35°,∠C=45°,求∠DAE的度数.【教学说明】让学生自主完成,加深对三角形内角和定理的理解和检验学生运用的情况,第5题教师可以引导,对有困难的学生及时帮助、纠正强化.【答案】1.30°;2.直角三角形;3.C;4.D.5.解:在△ABC中,∠B=35°,∠C=45°,∴∠BAC=180°-(35°+45°)=100°.又∵AE平分∠BAC,∴∠CAE=∠BAC=×100°=50°.在△ACD中,∠ADC=90°,∠C=45°,∴∠CAD=90°-45°=
7、45°.∴∠DAE=∠CAE-∠CAD=50°-45°=5°.四、师生互动,课堂小结你掌握了哪些证明三角形内角和定理的方法?在证明的过程中遇到了哪些困难?请与大家共同交流.【教学说明】帮助学生回顾本节课的证明方法、加深对三角形内角和定理的理解和掌握,便于灵活熟练的运用.1.布置作业:习题7.6中的第1、2、3、4题.2.完成本课时练习部分.通过让学生动手实践、自主探究、合作交流的学习方式,教师的主导作用和学生的主体作用得到充分的展示,学生感受到学习的快乐,体会到探究与发现带来的乐趣.特别是证明方法的
8、多样性让不同的学生有不同的发展,交流更是一种互补.
此文档下载收益归作者所有