高中数学 3.2.1几类不同增长的函数模型教案 新人教a版必修1(2)

高中数学 3.2.1几类不同增长的函数模型教案 新人教a版必修1(2)

ID:29627117

大小:8.47 MB

页数:7页

时间:2018-12-21

高中数学 3.2.1几类不同增长的函数模型教案 新人教a版必修1(2)_第1页
高中数学 3.2.1几类不同增长的函数模型教案 新人教a版必修1(2)_第2页
高中数学 3.2.1几类不同增长的函数模型教案 新人教a版必修1(2)_第3页
高中数学 3.2.1几类不同增长的函数模型教案 新人教a版必修1(2)_第4页
高中数学 3.2.1几类不同增长的函数模型教案 新人教a版必修1(2)_第5页
资源描述:

《高中数学 3.2.1几类不同增长的函数模型教案 新人教a版必修1(2)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、课题:§3.2.1几类不同增长的函数模型教学目标:1.借助计算器或计算机制作数据表格和函数图像,对几种常见的函数类型的增长情况进行比较,在实际应用的背景中理解直线上升、指数爆炸、对数增长等不同函数类型增长的差异。2.通过对投资方案的选择,学会利用数据表格和函数图像分析问题和解决问题;引导学生充分体验将实际问题“数学化”解决的过程,从而理解“数学建模”的思想方法解决问题的有效性。3.鼓励学生收集一些社会生活中普遍使用的函数模型(指数函数、对数函数、幂函数、分段函数等),体验函数是描述宏观世界变化规律的基本数学模型,从而培养学习数学的

2、兴趣。教学重点:将实际问题转化为函数模型,比较常数函数、一次函数、指数函数、对数函数模型的增长差异,结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义.教学难点:如何选择和利用不同函数模型增长差异性分析解决实际问题。技术手段:计算机辅助教学。教学方法:启发探究式。教学过程一、创设情境,引入课题(1)先看一张图片,这是什么动物?(2)关于兔子有这样一段故事:1859年,有人从欧洲带进澳洲几只兔子,由于澳洲有茂盛的牧草,而且没有兔子的天敌,兔子数量不断增加,不到100年,兔子们占领了整个澳大利亚,数量达到75亿只.(3)

3、请看画面。(4)可爱的兔子变得可恶起来,75亿只兔子吃掉了相当于75亿只羊所吃的牧草,草原的载畜率大大降低,而牛羊是澳大利亚的主要牲口.这使澳大利亚头痛不已,他们采用各种方法消灭这些兔子,直至二十世纪五十年代,科学家采用载液瘤病毒杀死了百分之九十的野兔,澳大利亚人才算松了一口气.(5)一般而言,在理想条件(食物或养料充足,空间条件充裕,气候适宜,没有敌害等)下,种群在一定时期内的增长大致符合“J”型曲线;在有限环境(空间有限,食物有限,有捕食者存在等)中,种群增长到一定程度后不增长,曲线呈“S”型.可用指数函数描述一个种群的前期增

4、长,用对数函数描述后期的增长.(6)生活中的增长现象比比皆是,在我们学过的函数中也有许多成增长形态发展的。因此研究不同增长函数模型是非常必要的。二、组织引导,合作探究例1.假设你有一笔资金用于投资,现有三种投资方案供你选择,这三种方案的回报如下:方案一:每天回报40元;方案二:第一天回报10元,以后每天比前一天多回报10元;方案三:第一天回报0.4元,以后每天的回报比前一天翻一番.请问,你会选择哪种投资方案?【问题1】选择最佳投资方案的原则是什么?预案一:谁的回报多。(有条件限制吗?回报指的是什么——是每天回报还是总回报)预案二:

5、相同条件下,谁的回报多。(相同条件指的是什么?)答案:从第一天起,相同时间内哪一个方案的累计回报数(总回报数)多,就选哪一个方案。【问题2】本题中涉及哪些数量关系?如何利用函数描述这些数量关系?预案一:总回报数与天数的关系。设总回报数为y元,投资天数为x则方案一:y=40x(x∈N*);方案二:;方案三:。请学生课下进一步探究。预案二:每天回报数与投资天数之间的关系。设第x天所得回报是y元,则方案一可用函数y=40(x∈N*)进行描述;方案二可以用函数y=10x(x∈N*)进行描述;方案三可以用函数进行描述。【问题3】你能认识一下

6、方案中的三个函数吗?方案一是常数函数;方案二是一次函数;方案三是指数型函数,方案二、三中的函数都是增函数。【问题4】下面利用这三个函数关系式,算出每天的回报数,请填写在表一中。x/天方案一方案二方案三每天回报数y/元每天回报数y/元每天回报数y/元140100.4240200.8340301.6440403.2540506.46406012.87407025.68408051.294090102.41040100204.8…………3040300214748364.8【问题5】这三个函数增长速度怎样,通过哪个量来判断这三个函数的增长

7、速度?(通过增加量(增长量)来判断,也就是从第二天起,每一天与前一天的变化量)下面请同学再算一下每一种方案的增加量。x/天方案一方案二方案三每天回报数y/元增加量每天回报数y/元增加量每天回报数y/元增加量140100.4240020100.80.4340030101.60.8440040103.21.6540050106.43.26400601012.86.47400701025.612.88400801051.225.694009010102.451.21040010010204.8102.4…………………3040030010

8、214748364.8107374182.4【问题6】这三种方案的增加量有何特点?可以看到,方案一、方案二增长量固定不变,而方案三是“指数增长”,其“增长量”是成倍增加的,从第7天开始,方案三比其他两个方案增长得快得多,这种增长速度是方案一、方案二

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。