高考数学二轮复习 专题7 解析几何 教案 文

高考数学二轮复习 专题7 解析几何 教案 文

ID:29390273

大小:2.00 MB

页数:17页

时间:2018-12-19

高考数学二轮复习 专题7 解析几何 教案 文_第1页
高考数学二轮复习 专题7 解析几何 教案 文_第2页
高考数学二轮复习 专题7 解析几何 教案 文_第3页
高考数学二轮复习 专题7 解析几何 教案 文_第4页
高考数学二轮复习 专题7 解析几何 教案 文_第5页
资源描述:

《高考数学二轮复习 专题7 解析几何 教案 文》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、2012届高考数学二轮复习专题七解析几何【重点知识回顾】解析几何是高中数学的重要内容之一,各地区在这一部分的出题情况较为相似,一般两道小题一道大题,分值约占15%,即22分左右.具体分配为:直线和圆以及圆锥曲线的基础知识两个容易或中档小题,机动灵活,考查双基;解答题难度设置在中等或以上,一般都有较高的区分度,主要考查解析几何的本质——“几何图形代数化与代数结果几何化”以及分析问题解决问题的能力.解析几何的主要内容是高二中的直线与方程,圆与方程,圆锥曲线与方程考查的重点:直线的倾斜角与斜率、点到直线的距离、两条直线平行与垂直关系的判定、直线和圆的

2、方程、直线与圆、圆与圆的位置关系;圆锥曲线的定义、标准方程、简单的几何性质、直线与圆锥曲线的位置关系、曲线与方程、圆锥曲线的简单应用等,其中以直线与圆锥曲线的位置关系最为重要。圆锥曲线方程这章扩展开的内容比较多,比较繁杂,对学生来说不一定要把所有的结论一一记住,关键是掌握圆锥曲线的概念实质以及直线和圆锥曲线的关系.因此,在复习过程中要注意下述几个问题:(1)在解答有关圆锥曲线问题时,首先要考虑圆锥曲线焦点的位置,对于抛物线还应同时注意开口方向,这是减少或避免错误的一个关键,同时勿忘用定义解题.(2)在考查直线和圆锥曲线的位置关系或两圆锥曲线的位

3、置关系时,可以利用方程组消元后得到二次方程,用判别式进行判.但对直线与抛物线的对称轴平行时,直线与双曲线的渐近线平行时,不能使用判别式,为避免繁琐运算并准确判断特殊情况,此时要注意用好分类讨论和数形结合的思想方法.画出方程所表示的曲线,通过图形求解.当直线与圆锥曲线相交时:涉及弦长问题,常用“韦达定理法”设而不求计算弦长(即应用弦长公式);涉及弦长的中点问题,常用“差分法”设而不求,将弦所在直线的斜率、弦的中点坐标联系起来,相互转化.同时还应充分挖掘题目的隐含条件,寻找量与量间的关系灵活转化,往往就能事半功倍.(3)求圆锥曲线方程通常使用待定系

4、数法,若能据条件发现符合圆锥曲线定义时,则用定义求圆锥曲线方程非常简捷.在处理与圆锥曲线的焦点、准线有关问题,也可反用圆锥曲线定义简化运算或证明过程.一般求已知曲线类型的曲线方程问题,可采用“先定形,后定式,再定量”的步骤.定形——指的是二次曲线的焦点位置与对称轴的位置;定式——根据“形”设方程的形式,注意曲线系方程的应用,如当椭圆的焦点不确定在哪个坐标轴上时,可设方程为mx2+ny2=1(m>0,n>0);定量——由题设中的条件找到“式”中特定系数的等量关系,通过解方程得到量的大小.(4)在解与焦点三角形(椭圆、双曲线上任一点与两焦点构成的三

5、角形称为焦点三角形)有关的命题时,一般需使用正余弦定理、和分比定理及圆锥曲线定义.(5)要熟练掌握一元二次方程根的判别式和韦达定理在求弦长、中点弦、定比分点弦、弦对定点张直角等方面的应用.(6)求动点轨迹方程是解析几何的重点内容之一,它是各种知识的综合运用,具有较大的灵活性,求动点轨迹方程的实质是将“曲线”化成“方程”,将“形”化成“数”,使我们通过对方程的研究来认识曲线的性质.求动点轨迹方程的常用方法有:直接法、定义法、几何法、代入转移法、参数法、交轨法等.解题时,注意求轨迹的步骤:建系、设点、列式、化简、确定点的范围.【典型例题】1.直线的

6、基本问题:直线的方程几种形式、直线的斜率、两条直线平行与垂直的条件、两直线交点、点到直线的距离。例1已知与,若两直线平行,则的值为.解析:.点评:解决两直线平行问题时要记住看看是不是重合.易错指导:不知道两直线平行的条件、不注意检验两直线是否重合是本题容易出错的地方。例2经过圆的圆心,且与直线垂直的直线方程是.解析:圆心坐标是,所求直线的斜率是,故所求的直线方程是,即点评:本题考查解析几何初步的基本知识,涉及到求一般方程下的圆心坐标,两直线垂直的条件,直线的点斜式方程,题目简单,但交汇性很强,非常符合在知识网络的交汇处设计试题的命题原则,一个小

7、题就把解析几何初步中直线和圆的基本知识考查的淋漓尽致易错指导:基础知识不牢固,如把圆心坐标求错,不知道两直线垂直的条件,或是运算变形不细心,都可能导致得出错误的结果2.圆的基本问题:圆的标准方程和一般方程、两圆位置关系.例3已知圆的方程为.设该圆过点的最长弦和最短弦分别为和,则四边形的面积为()A.B.C.D.解析:圆心坐标是,半径是,圆心到点的距离为,根据题意最短弦和最长弦(即圆的直径)垂直,故最短弦的长为,所以四边形的面积为点评:本题考查圆、平面图形的面积等基础知识,考查逻辑推理、运算求解等能力。解题的关键有二,一是通过推理知道两条弦互相垂

8、直并且有一条为圆的直径,二是能根据根据面积分割的道理,推出这个四边形的面积就是两条对角线之积的一半。本题是一道以分析问题解决问题的能力立意设计的试题。

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。