高中数学《空间中的垂直关系》学案1 新人教b版必修2

高中数学《空间中的垂直关系》学案1 新人教b版必修2

ID:29149170

大小:117.00 KB

页数:6页

时间:2018-12-17

高中数学《空间中的垂直关系》学案1 新人教b版必修2_第1页
高中数学《空间中的垂直关系》学案1 新人教b版必修2_第2页
高中数学《空间中的垂直关系》学案1 新人教b版必修2_第3页
高中数学《空间中的垂直关系》学案1 新人教b版必修2_第4页
高中数学《空间中的垂直关系》学案1 新人教b版必修2_第5页
资源描述:

《高中数学《空间中的垂直关系》学案1 新人教b版必修2》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、空间中的垂直关系一.学习内容:空间中的垂直关系二、学习目标1、掌握直线与平面垂直的定义、判定定理和性质定理,并能运用它们进行论证和解决有关的问题;2、掌握平面与平面垂直的概念和判定定理、性质定理,并能运用它们进行推理论证和解决有关问题;3、在研究垂直问题时,要善于应用“转化”和“降维”的思想,通过线线、线面、面面平行与垂直关系的转化,从而使问题获得解决。三、知识要点1、直线与平面垂直的定义:如果一条直线和一个平面内的任何一条直线都垂直,那么就称这条直线和这个平面垂直。2、直线与平面垂直的判定:常用方法有:

2、①判定定理:.②b⊥α,a∥ba⊥α;(线面垂直性质定理)③α∥β,a⊥βa⊥α(面面平行性质定理)④α⊥β,α∩β=l,a⊥l,aβa⊥α(面面垂直性质定理)3、直线与平面垂直的性质定理:①如果两条直线同垂直于一个平面,那么这两条直线平行。(a⊥α,b⊥α⇒a∥b)②直线和平面垂直时,那么该直线就垂直于这个平面内的任何直线()4、点到平面的距离的定义:从平面外一点引这个平面的垂线,这个点和垂足间的线段的长度叫做这个点到平面的距离。特别注意:点到面的距离可直接向面作垂线,但要考虑垂足的位置,如果垂足的位置

3、不能确定,往往采取由点向面上某一条线作垂线,再证明此垂足即为面的垂足。5、平面与平面垂直的定义及判定定理:(1)定义:如果两个相交平面的交线与第三个平面垂直,又这两个平面与第三个平面相交所得的两条交线互相垂直,就说这两个平面互相垂直。记作:平面α⊥平面β(2)判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。(简称:线面垂直,面面垂直)6、两个平面垂直的性质定理:如果两个平面垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面。(简称:面面垂直,线面垂直。)思维方式:判定两相交

4、平面垂直的常用方法是:线面垂直,面面垂直;有时用定义也是一种办法。【典型例题】例1、(1)对于直线m、n和平面α、β,α⊥β的一个充分条件是()A、m⊥n,m∥α,n∥βB、m⊥n,α∩β=m,nαC、m∥n,n⊥β,mαD、m∥n,n⊥β,m⊥α(2)设a、b是异面直线,给出下列命题:①经过直线a有且仅有一个平面平行于直线b;②经过直线a有且仅有一个平面垂直于直线b;③存在分别经过直线a和b的两个平行平面;④存在分别经过直线a和b的两个平面互相垂直。其中错误的命题为()A、①与②B、②与③C、③与④D、

5、仅②(3)已知平面α⊥平面β,m是α内一条直线,n是β内一条直线,且m⊥n,那么,甲:m⊥β;乙:n⊥α丙:m⊥β或n⊥α;丁:m⊥β且n⊥α。这四个结论中,不正确的三个是()解:(1)对于A,平面α与β可以平行,也可以相交,但不垂直。对B,平面α内直线n垂直于两个平面的交线m,直线n与平面β不一定垂直,平面α、β也不一定垂直。对D,m⊥α,m∥n则n⊥α,又n⊥β,所以α∥β。只有C正确,m∥n,n⊥β则m⊥β又mα,由平面与平面垂直的判定定理得α⊥β。故选C。(2)①正确,过a上任一点作b的平行线b′

6、,则ab′确定唯一平面。②错误,假设成立则b⊥该平面,而a该平面,∴a⊥b,但a、b异面却不一定垂直。③正确,分别过a、b上的任一点作b、a的平行线,由各自相交直线所确定的平面即为所求。④正确,换角度思考两个垂直的平面内各取一直线会出现各种异面形式,综上所述:仅②错误选D(3)丙正确。举反例:在任一平面中作平行于交线的直线m(或n),在另一平面作交线的垂线n(或m)即可推翻甲、乙、丁三项。思维点拨:解决这类问题关键是注意这是在空间而非平面内。例2、如图,ABCD为直角梯形,∠DAB=∠ABC=90°,AB

7、=BC=a,AD=2a,PA⊥平面ABCD。PA=a。(1)求证:PC⊥CD。(2)求点B到直线PC的距离。(1)证明:取AD的中点E,连AC、CE,则ABCE为正方形,ΔCED为等腰直角三角形,∴AC⊥CD,∵PA⊥平面ABCD,∴AC为PC在平面ABCD上的射影,∴PC⊥CD(2)解:连BE,交AC于O,则BE⊥AC,又BE⊥PA,AC∩PA=A,∴BE⊥平面PAC过O作OH⊥PC于H,则BH⊥PC,∵PA=a,AC=a,PC=a,∴OH=,∵BO=a,∴BH=即为所求。例3、在斜三棱柱A1B1C1—

8、ABC中,底面是等腰三角形,AB=AC,侧面BB1C1C⊥底面ABC(1)若D是BC的中点,求证AD⊥CC1;(2)过侧面BB1C1C的对角线BC1的平面交侧棱于M,若AM=MA1,求证截面MBC1⊥侧面BB1C1C;(3)AM=MA1是截面MBC1⊥平面BB1C1C的充要条件吗?请你叙述判断理由。命题意图:本题主要考查线面垂直、面面垂直的判定与性质。知识依托:线面垂直、面面垂直的判定与性质。错解分析:(3)的结论在证必要性时

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。