欢迎来到天天文库
浏览记录
ID:28911278
大小:152.00 KB
页数:9页
时间:2018-12-15
《七年级数学下册 8.4 因式分解复习(新版)沪科版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、8.4因式分解新课指南1.知识与技能:掌握运用提公因式法、公式法、分组分解法分解因式,及形如x2+(p+q)x+pq的多项式因式分解,培养学生应用因式分解解决问题的能力.2.过程与方法:经历探索因式分解方法的过程,培养学生研讨问题的方法,通过猜测、推理、验证、归纳等步骤,得出因式分解的方法.3.情感态度与价值观:通过因式分解的学习,使学生体会数学美,体会成功的自信和团结合作精神,并体会整体数学思想和转化的数学思想.4.重点与难点:重点是用提公因式法和公式法分解因式.难点是分组分解法和形如x2+(p+q)x+pq的多项式的因式分解.教材解读精华要
2、义数学与生活630能被哪些数整除?说说你是怎么想的.思考讨论在小学我们知道,要想解决这个问题,需要把630分解成质数的乘积的形式,即630=2×32×5×7.类似地,在整式的变形中,有时需要将一个多项式写成几个整式的乘积的形式,这种变形就是因式分解.那么如何进行因式分解呢?知识详解知识点1因式分解的定义把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式.【说明】(1)因式分解与整式乘法是相反方向的变形,即互逆的运算.例如:(2)因式分解是恒等变形,因此可以用整式乘法来检验.知识点2提公因式法多项式m
3、a+mb+mc中的各项都有一个公共的因式m,我们把因式m叫做这个多项式的公因式.ma+mb+mc=m(a+b+c)就是把ma+mb+mc分解成两个因式乘积的形式,其中一个因式是各项的公因式m,另一个因式(a+b+c)是ma+mb+mc除以m所得的商,像这种分解因式的方法叫做提公因式法.例如:x2-x=x(x-1),8a2b-4ab+2a=2a(4ab-2b+1).探究交流下列变形是否是因式分解?为什么,(1)3x2y-xy+y=y(3x2-x);(2)x2-2x+3=(x-1)2+2;(3)x2y2+2xy-1=(xy+1)(xy-1);(4)
4、xn(x2-x+1)=xn+2-xn+1+xn.点拨(1)不是因式分解,提公因式错误,可以用整式乘法检验其真伪.(2)不是因式分解,不满足因式分解的含义(3)不是因式分解,因为因式分解是恒等变形而本题不恒等.(4)不是因式分解,是整式乘法.知识点3公式法(1)平方差公式:a2-b2=(a+b)(a-b).即两个数的平方差,等于这两个数的和与这个数的差的积.例如:4x2-9=(2x)2-32=(2x+3)(2x-3).(2)完全平方公式:a2±2ab+b2=(a±b)2.其中,a2±2ab+b2叫做完全平方式.即两个数的平方和加上(或减去)这两个
5、数的积的2倍,等于这两个数的和(或差)的平方.例如:4x2-12xy+9y2=(2x)2-2·2x·3y+(3y)2=(2x-3y)2.探究交流下列变形是否正确?为什么?(1)x2-3y2=(x+3y)(x-3y);(2)4x2-6xy+9y2=(2x-3y)2;(3)x2-2x-1=(x-1)2.点拨(1)不正确,目前在有理数范围内不能再分解.(2)不正确,4x2-6xy+9y2不是完全平方式,不能进行分解.(3)不正确,x2-2x-1不是完全平方式,不能用完全平方公式进行分解,而且在有理数范围内也不能分解.知识点4分组分解法(1)形如:am
6、+an+bm+bn=(am+an)+(bm+bn)=a(m+n)+b(m+n)=(m+n)(a+b)(2)形如:x2-y2+2x+1=(x2+2x+1)-y2=(x+1)2-y2=(x+y+1)(x-y+1).把多项式进行适当的分组,分组后能够有公因式或运用公式,这样的因式分解方法叫做分组分解法.知识规律小结(1)分组分解法一般分组方式不惟一.例如:将am+an+bm+bn因式分解,方法有两种:方法1:am+an+bm+bn=(am+an)+(bm+bn)=a(m+n)+b(m+n)=(m+n)(a+b).方法2:am+an+bm+bn=(am
7、+bm)+(an+bn)=m(a+b)+n(a+b)=(m+n)(a+b).(2)分组除具有尝试性外,还要具有目的性,或者分组后能出现公因式,或者分组后能运用公式.例如:am+an+bm+bn分组后有公因式;x2-y2+2x+1分组后能运用公式.分组分解法是因式分解的基本方法,体现了化整体为局部,又统揽全局的思想,如何恰当分组是解题的关键,常见的分组方法有:(1)按字母分组;(2)按次数分组;(3)按系数分组.例如:把下列各式因式分解.(1)am+bm+an+bn;(2)x2-y2+x+y;(3)2ax-5by+2ay-5bx.知识点5关于x2
8、+(p+q)x+pq型二次三项式的因式分解x2+(p+q)x+pq=(x+p)(x+q).事实上:x2+(p+q)x+pq=x2+px+qx+pq=(
此文档下载收益归作者所有