奥数:第6讲.计数综合.学生版

奥数:第6讲.计数综合.学生版

ID:28757389

大小:1.65 MB

页数:14页

时间:2018-12-13

奥数:第6讲.计数综合.学生版_第1页
奥数:第6讲.计数综合.学生版_第2页
奥数:第6讲.计数综合.学生版_第3页
奥数:第6讲.计数综合.学生版_第4页
奥数:第6讲.计数综合.学生版_第5页
资源描述:

《奥数:第6讲.计数综合.学生版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第六讲计数综合教学目标1.使学生正确理解排列、组合的意义;正确区分排列、组合问题;2.了解排列、排列数和组合数的意义,能根据具体的问题,写出符合要求的排列或组合;3.掌握排列组合的计算公式以及组合数与排列数之间的关系;4.会分析与数字有关的计数问题,以及与其他专题的综合运用,培养学生的抽象能力和逻辑思维能力;通过本讲的学习,对排列组合的一些计数问题进行归纳总结,重点掌握排列与组合的联系和区别,并掌握一些排列组合技巧,如捆绑法、挡板法等。知识点拨一、排列问题在实际生活中经常会遇到这样的问题,就是要把一些事物排在一起,构成一列,计算有多少种排法,就是排列问题.在排的过程中

2、,不仅与参与排列的事物有关,而且与各事物所在的先后顺序有关。一般地,从个不同的元素中取出()个元素,按照一定的顺序排成一列,叫做从个不同元素中取出个元素的一个排列.根据排列的定义,两个排列相同,指的是两个排列的元素完全相同,并且元素的排列顺序也相同.如果两个排列中,元素不完全相同,它们是不同的排列;如果两个排列中,虽然元素完全相同,但元素的排列顺序不同,它们也是不同的排列.排列的基本问题是计算排列的总个数.从个不同的元素中取出()个元素的所有排列的个数,叫做从个不同的元素的排列中取出个元素的排列数,我们把它记做.根据排列的定义,做一个元素的排列由个步骤完成:步骤:从个

3、不同的元素中任取一个元素排在第一位,有种方法;步骤:从剩下的()个元素中任取一个元素排在第二位,有()种方法;……步骤:从剩下的个元素中任取一个元素排在第个位置,有(种)方法;由乘法原理,从个不同元素中取出个元素的排列数是,即,这里,,且等号右边从开始,后面每个因数比前一个因数小,共有个因数相乘。二、排列数一般地,对于的情况,排列数公式变为.表示从个不同元素中取个元素排成一列所构成排列的排列数.这种个排列全部取出的排列,叫做个不同元素的全排列.式子右边是从开始,后面每一个因数比前一个因数小,一直乘到的乘积,记为,读做的阶乘,则还可以写为:,其中。三、组合问题日常生活中

4、有很多“分组”问题.如在体育比赛中,把参赛队分为几个组,从全班同学中选出几人参加某项活动等等.这种“分组”问题,就是我们将要讨论的组合问题,这里,我们将着重研究有多少种分组方法的问题。一般地,从个不同元素中取出个()元素组成一组不计较组内各元素的次序,叫做从个不同元素中取出个元素的一个组合.从排列和组合的定义可以知道,排列与元素的顺序有关,而组合与顺序无关.如果两个组合中的元素完全相同,那么不管元素的顺序如何,都是相同的组合,只有当两个组合中的元素不完全相同时,才是不同的组合.从个不同元素中取出个元素()的所有组合的个数,叫做从个不同元素中取出个不同元素的组合数.记作

5、。一般地,求从个不同元素中取出的个元素的排列数可分成以下两步:第一步:从个不同元素中取出个元素组成一组,共有种方法;  第二步:将每一个组合中的个元素进行全排列,共有种排法.根据乘法原理,得到.因此,组合数.这个公式就是组合数公式.四、组合数的重要性质一般地,组合数有下面的重要性质:()这个公式的直观意义是:表示从个元素中取出个元素组成一组的所有分组方法.表示从个元素中取出()个元素组成一组的所有分组方法.显然,从个元素中选出个元素的分组方法恰是从个元素中选个元素剩下的()个元素的分组方法。例如,从人中选人开会的方法和从人中选出人不去开会的方法是一样多的,即。规定,。

6、例题精讲名男生,名女生,全体排成一行,问下列情形各有多少种不同的排法:⑴甲不在中间也不在两端;⑵甲、乙两人必须排在两端;⑶男、女生分别排在一起;⑷男女相间.例题11【巩固】从名运动员中选出人参加接力赛.试求满足下列条件的参赛方案各有多少种:⑴甲不能跑第一棒和第四棒;⑵甲不能跑第一棒,乙不能跑第四棒。【巩固】一台晚会上有个演唱节目和个舞蹈节目.求:⑴当个舞蹈节目要排在一起时,有多少不同的安排节目的顺序?⑵当要求每个舞蹈节目之间至少安排个演唱节目时,一共有多少不同的安排节目的顺序?【巩固】由个不同的独唱节目和个不同的合唱节目组成一台晚会,要求任意两个合唱节目不相邻,开始和

7、最后一个节目必须是合唱,则这台晚会节目的编排方法共有多少种?甲、乙、丙、丁、戊、己六个人站队,要求:甲乙两人之间必须有两个人,问一共有多少种站法?例题22【巩固】甲、乙、丙、丁、戊、己六个人站队,要求:甲乙两人之间最多有两个人,问一共有多少种站法?【巩固】甲、乙、丙、丁、戊、己、庚、辛八个人站队,要求:甲不能站在队伍最靠左的三个位置,乙不能站在队伍最靠右的三个位置,丙不能站在队伍两端,问一共有多少种站法?光明小学甲、乙、丙三个班组织了一次文艺晚会,共演出十四个节目.如果每个班至少演出三个节目,那么,这三个班演出节目数的不同情况共有多少种?例题33用排

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。