欢迎来到天天文库
浏览记录
ID:28733741
大小:59.00 KB
页数:7页
时间:2018-12-13
《电气控制与PLC课程设计.doc》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、电气控制与PLC课程设计题目:单结晶体管触发电路设计系别:xxx专业:xxx姓名:xxx学号:xxx指导教师:xxx一.设计题目单结晶体管触发电路设计二.设计要求1、完成电路图设计,确定器件。2、计算器件参数,列出材料(器件)清单。3、撰写电路设计说明书一份,3000字左右。4、设计时间:一周(17周)。5、设计完成,上交全部设计材料(用档案袋装好)。6、遵守设计纪律,如有事,需提前请假。7、设计成绩根据设计说明书及平时考勤综合评定。三.实验线路、原理及介绍晶闸管是硅晶体闸流管的简称,它包括普通晶闸管和双向、可关断
2、、逆导、快速等晶闸管。普通型晶闸管(Thyristor)曾称为可控硅整流器,常用SCR(SiliconControlledRectifier)表示。在实际应用中,如果没有特殊说明,皆指普通晶闸管而言。晶闸管主要用来组成整流、逆变、斩波、交流调压、变频等变流装置和交流开关以及家用电器实用电路等。单结晶体管具有大的脉冲电流能力而且电路简单,因此在各种开关应用中,在构成定时电路或触发SCR等方面获得了广泛应用。它的开关特性具有很高的温度稳定性,基本上不随温度而变化。1、如下图所示,它能产生一系列脉冲,用来触发晶闸管。(a
3、)电路图(b)波形图单结管振荡电路及波形2.当合上开关S后,电源通过R1、R2加到单结管的两个基极上,同时又通过R、RP向电容器C充电,uC按指数规律上升。在uC(uC=uE)4、荡。3.当E、B1极之间截止后,电源又对C充电,并重复上述过程,结果在R1上得到一个周期性尖脉冲输出电压,如图所示。上述电路的工作过程是利用了单结管负阻特性和RC充放电特性,如果改变RP,便可改变电容充放电的快慢,使输出的脉冲前移或后移,从而改变控制角α,控制了晶闸管触发导通的时刻。显然,充放电时间常数τ=RC大时,触发脉冲后移,α大,晶闸管推迟导通;τ小时,触发脉冲前移,α小,晶闸管提前导通。需要特别说明的是:实用中必须解决触发电路与主电路同步的问题,否则会产生失控现象。用单结管振荡电路提供触发电压时,解决同步问5、题的具体办法可用稳压管对全波整流输出限幅后作为基极电源,如图所示。图中TS称同步变压器,初级接主电源。4.单结晶体管简介只有一个PN结作为发射极而有两个基极的三端半导体器件,早期称为双基极二极管。其典型结构是以一个均匀轻掺杂高电阻率的N型单晶半导体作为基区,两端做成欧姆接触的两个基极,在基区中心或者偏向其中一个极的位置上用浅扩散法重掺杂制成PN结作为发射极(图中)。当基极B1和B2之间加上电压时(图中b),电流从B2流向B1,并在结处基区对B1的电势形成反偏状态。如果将一个信号加在发射极上,且此信号超过原反偏电势时6、,器件呈导电状态。一旦正偏状态出现,便有大量空穴注入基区,使发射极和B1之间的电阻减小,电流增大,电势降低,并保持导通状态,改变两个基极间的偏置或改变发射极信号才能使器件恢复原始状态。因此,这种器件显示出典型的负阻特性(见图c),特别适用于开关系统中的弛张振荡器,可用于定时电路、控制电路和读出电路。5.单结晶体管的特性由图可以看出,两基极b1与b2之间的电阻称为基极电阻:rbb=rb1+rb2式中:rb1----第一基极与发射结之间的电阻,其数值随发射极电流ie而变化,rb2为第二基极与发射结之间的电阻,其数值与i7、e无关;发射结是PN结,与二极管等效。若在两面三刀基极b2、b1间加上正电压Vbb,则A点电压为:VA=[rb1/(rb1+rb2)]vbb=(rb1/rbb)vbb=ηVbb式中:η----称为分压比,其值一般在0.3---0.85之间,如果发射极电压VE由零逐渐增加,就可测得单结晶体管的伏安特性,见图2图2、单结晶体管的伏安特性(1)当Ve<ηVbb时,发射结处于反向偏置,管子截止,发射极只有很小的漏电流Iceo。(2)当Ve≥ηVbb+VDVD为二极管正向压降(约为0.7伏),PN结正向导通,Ie显著增加,r8、b1阻值迅速减小,Ve相应下降,这种电压随电流增加反而下降的特性,称为负阻特性。管子由截止区进入负阻区的临界P称为峰点,与其对就的发射极电压和电流,分别称为峰点电压Vp和峰点电流Ip和峰点电流Ip。Ip是正向漏电流,它是使单结晶体管导通所需的最小电流,显然Vp=ηVbb(3)随着发射极电流ie不断上升,Ve不断下降,降到V点后,Ve不在降了,这点V称为谷点,
4、荡。3.当E、B1极之间截止后,电源又对C充电,并重复上述过程,结果在R1上得到一个周期性尖脉冲输出电压,如图所示。上述电路的工作过程是利用了单结管负阻特性和RC充放电特性,如果改变RP,便可改变电容充放电的快慢,使输出的脉冲前移或后移,从而改变控制角α,控制了晶闸管触发导通的时刻。显然,充放电时间常数τ=RC大时,触发脉冲后移,α大,晶闸管推迟导通;τ小时,触发脉冲前移,α小,晶闸管提前导通。需要特别说明的是:实用中必须解决触发电路与主电路同步的问题,否则会产生失控现象。用单结管振荡电路提供触发电压时,解决同步问
5、题的具体办法可用稳压管对全波整流输出限幅后作为基极电源,如图所示。图中TS称同步变压器,初级接主电源。4.单结晶体管简介只有一个PN结作为发射极而有两个基极的三端半导体器件,早期称为双基极二极管。其典型结构是以一个均匀轻掺杂高电阻率的N型单晶半导体作为基区,两端做成欧姆接触的两个基极,在基区中心或者偏向其中一个极的位置上用浅扩散法重掺杂制成PN结作为发射极(图中)。当基极B1和B2之间加上电压时(图中b),电流从B2流向B1,并在结处基区对B1的电势形成反偏状态。如果将一个信号加在发射极上,且此信号超过原反偏电势时
6、,器件呈导电状态。一旦正偏状态出现,便有大量空穴注入基区,使发射极和B1之间的电阻减小,电流增大,电势降低,并保持导通状态,改变两个基极间的偏置或改变发射极信号才能使器件恢复原始状态。因此,这种器件显示出典型的负阻特性(见图c),特别适用于开关系统中的弛张振荡器,可用于定时电路、控制电路和读出电路。5.单结晶体管的特性由图可以看出,两基极b1与b2之间的电阻称为基极电阻:rbb=rb1+rb2式中:rb1----第一基极与发射结之间的电阻,其数值随发射极电流ie而变化,rb2为第二基极与发射结之间的电阻,其数值与i
7、e无关;发射结是PN结,与二极管等效。若在两面三刀基极b2、b1间加上正电压Vbb,则A点电压为:VA=[rb1/(rb1+rb2)]vbb=(rb1/rbb)vbb=ηVbb式中:η----称为分压比,其值一般在0.3---0.85之间,如果发射极电压VE由零逐渐增加,就可测得单结晶体管的伏安特性,见图2图2、单结晶体管的伏安特性(1)当Ve<ηVbb时,发射结处于反向偏置,管子截止,发射极只有很小的漏电流Iceo。(2)当Ve≥ηVbb+VDVD为二极管正向压降(约为0.7伏),PN结正向导通,Ie显著增加,r
8、b1阻值迅速减小,Ve相应下降,这种电压随电流增加反而下降的特性,称为负阻特性。管子由截止区进入负阻区的临界P称为峰点,与其对就的发射极电压和电流,分别称为峰点电压Vp和峰点电流Ip和峰点电流Ip。Ip是正向漏电流,它是使单结晶体管导通所需的最小电流,显然Vp=ηVbb(3)随着发射极电流ie不断上升,Ve不断下降,降到V点后,Ve不在降了,这点V称为谷点,
此文档下载收益归作者所有