欢迎来到天天文库
浏览记录
ID:28726461
大小:262.50 KB
页数:12页
时间:2018-12-13
《初中数学竞赛试题 (19)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、初中数学竞赛试题考试时间2006年4月2日上午9∶30-11∶30满分120分一、选择题(共5小题,每小题6分,满分30分。以下每道小题均给出了代号为A,B,C,D的四个选项,其中有且只有一个选项是正确的。请将正确选项的代号填入题后的括号里。不填、多填或错填均得0分)1.在高速公路上,从3千米处开始,每隔4千米经过一个限速标志牌;并且从10千米处开始,每隔9千米经过一个速度监控仪.刚好在19千米处第一次同时经过这两种设施,那么第二次同时经过这两种设施的千米数是()(A)36(B)37(C)55(D)902.已知,,且
2、=8,则a的值等于()(A)-5(B)5(C)-9(D)93.Rt△ABC的三个顶点A,B,C均在抛物线上,并且斜边AB平行于x轴.若斜边上的高为h,则()(A)h<1(B)h=1(C)124.一个正方形纸片,用剪刀沿一条不过任何顶点的直线将其剪成两部分;拿出其中一部分,再沿一条不过任何顶点的直线将其剪成两部分;又从得到的三部分中拿出其中之一,还是沿一条不过任何顶点的直线将其剪成两部分……如此下去,最后得到了34个六十二边形和一些多边形纸片,则至少要剪的刀数是()(A)2004(B)2005(C)2
3、006(D)2007(第5题图)ABCDOQP5.如图,正方形ABCD内接于⊙O,点P在劣弧AB上,连结DP,交AC于点Q.若QP=QO,则的值为()(A)(B)(C)(D)二、填空题(共5小题,每小题6分,满分30分)(第7题图)ABCDGFE6.已知a,b,c为整数,且a+b=2006,c-a=2005.若a
4、乙两人分别从A、C两点同时出发,沿A→B→C→D→E→A→…方向绕广场行走,甲的速度为50米/分,乙的速度为46米/分.那么出发后经过分钟,甲、乙两人第一次行走在同一条边上.9.已知05、题(共4题,每小题15分,满分60分)11.已知,,为互质的正整数(即,是正整数,且它们的最大公约数为1),且≤8,.(1)试写出一个满足条件的x;(2)求所有满足条件的x.12.设,,为互不相等的实数,且满足关系式①②求a的取值范围.(第13题)ABCOPEK13.如图,点P为⊙O外一点,过点P作⊙O的两条切线,切点分别为A,B.过点A作PB的平行线,交⊙O于点C.连结PC,交⊙O于点E;连结AE,并延长AE交PB于点K.求证:PE·AC=CE·KB.14.10个学生参加n个课外小组,每一个小组至多5个人,每两个学6、生至少参加某一个小组,任意两个课外小组,至少可以找到两个学生,他们都不在这两个课外小组中.求n的最小值.2006年全国初中数学竞赛试题参考答案一、选择题(共5小题,每小题6分,满分30分。以下每道小题均给出了代号为A,B,C,D的四个选项,其中有且只有一个选项是正确的。请将正确选项的代号填入题后的括号里。不填、多填或错填均得0分)1.在高速公路上,从3千米处开始,每隔4千米经过一个限速标志牌;并且从10千米处开始,每隔9千米经过一个速度监控仪.刚好在19千米处第一次同时经过这两种设施,那么第二次同时经过这两种设施的千7、米数是()(A)36(B)37(C)55(D)90答:C.解:因为4和9的最小公倍数为36,19+36=55,所以第二次同时经过这两种设施的千米数是在55千米处.故选C.2.已知,,且=8,则a的值等于()(A)-5(B)5(C)-9(D)9答:C.解:由已知可得,.又=8,所以解得a=-9故选C.3.Rt△ABC的三个顶点A,B,C均在抛物线上,并且斜边AB平行于x轴.若斜边上的高为h,则()(A)h<1(B)h=1(C)12答:B.解:设点A的坐标为(a,a2),点C的坐标为(c,c2)(8、c9、10、<11、a12、),则点B的坐标为(-a,a2),由勾股定理,得,,所以.由于,所以a2-c2=1,故斜边AB上高h=a2-c2=1故选B.4.一个正方形纸片,用剪刀沿一条不过任何顶点的直线将其剪成两部分;拿出其中一部分,再沿一条不过任何顶点的直线将其剪成两部分;又从得到的三部分中拿出其中之一,还是沿一条不过任何顶点的直线将其剪成两部分……如此下去,最
5、题(共4题,每小题15分,满分60分)11.已知,,为互质的正整数(即,是正整数,且它们的最大公约数为1),且≤8,.(1)试写出一个满足条件的x;(2)求所有满足条件的x.12.设,,为互不相等的实数,且满足关系式①②求a的取值范围.(第13题)ABCOPEK13.如图,点P为⊙O外一点,过点P作⊙O的两条切线,切点分别为A,B.过点A作PB的平行线,交⊙O于点C.连结PC,交⊙O于点E;连结AE,并延长AE交PB于点K.求证:PE·AC=CE·KB.14.10个学生参加n个课外小组,每一个小组至多5个人,每两个学
6、生至少参加某一个小组,任意两个课外小组,至少可以找到两个学生,他们都不在这两个课外小组中.求n的最小值.2006年全国初中数学竞赛试题参考答案一、选择题(共5小题,每小题6分,满分30分。以下每道小题均给出了代号为A,B,C,D的四个选项,其中有且只有一个选项是正确的。请将正确选项的代号填入题后的括号里。不填、多填或错填均得0分)1.在高速公路上,从3千米处开始,每隔4千米经过一个限速标志牌;并且从10千米处开始,每隔9千米经过一个速度监控仪.刚好在19千米处第一次同时经过这两种设施,那么第二次同时经过这两种设施的千
7、米数是()(A)36(B)37(C)55(D)90答:C.解:因为4和9的最小公倍数为36,19+36=55,所以第二次同时经过这两种设施的千米数是在55千米处.故选C.2.已知,,且=8,则a的值等于()(A)-5(B)5(C)-9(D)9答:C.解:由已知可得,.又=8,所以解得a=-9故选C.3.Rt△ABC的三个顶点A,B,C均在抛物线上,并且斜边AB平行于x轴.若斜边上的高为h,则()(A)h<1(B)h=1(C)12答:B.解:设点A的坐标为(a,a2),点C的坐标为(c,c2)(
8、c
9、
10、<
11、a
12、),则点B的坐标为(-a,a2),由勾股定理,得,,所以.由于,所以a2-c2=1,故斜边AB上高h=a2-c2=1故选B.4.一个正方形纸片,用剪刀沿一条不过任何顶点的直线将其剪成两部分;拿出其中一部分,再沿一条不过任何顶点的直线将其剪成两部分;又从得到的三部分中拿出其中之一,还是沿一条不过任何顶点的直线将其剪成两部分……如此下去,最
此文档下载收益归作者所有