车载充电器Boost PFC AC-DC变换器设计.doc

车载充电器Boost PFC AC-DC变换器设计.doc

ID:28147619

大小:866.00 KB

页数:10页

时间:2018-12-08

车载充电器Boost PFC AC-DC变换器设计.doc_第1页
车载充电器Boost PFC AC-DC变换器设计.doc_第2页
车载充电器Boost PFC AC-DC变换器设计.doc_第3页
车载充电器Boost PFC AC-DC变换器设计.doc_第4页
车载充电器Boost PFC AC-DC变换器设计.doc_第5页
资源描述:

《车载充电器Boost PFC AC-DC变换器设计.doc》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、车载充电器BoostPFCAC/DC变换器设计  随着能源危机、资源枯竭以及大气污染等危害的加剧,我国已将新能源汽车确立为战略性新兴产业,车载充电器作为电动汽车的重要组成部分,其研究兼具理论研究价值和重要的工程应用价值。采用前级AC/DC和后级DC/DC相结合的车载充电器结构框图如图1所示。  当车载充电器接入电网时,会产生一定的谐波,污染电网,同时影响用电设备的工作稳定性。为了限制谐波量,国际电工委员会制定了用电设备谐波限制标准IEC61000-3-2,我国也发布了国标GB/T17625。为了符合上述标准,车载充电器必须进行功率因数校正(PFC)。PFCAC/DC变换

2、器一方面为后级DC/DC系统供电,另一方面为辅助电源供电,其设计的好坏直接影响车载充电器性能。    图1电动汽车车载充电器结构框图  鉴于纯电动汽车车载充电器对体积、谐波有着苛刻的要求,本设计采用有源功率因数校正(APFC)技术。APFC有多种拓扑结构,由于升压式拓扑具有驱动电路简单、PF值高和具有专门控制芯片的优点,选取Boost拓扑结构的主电路。考虑各种基本控制方式,选取了具有谐波失真小、对噪声不敏感和开关频率固定技术优势的平均电流控制方式。  本文针对功率为2kW的纯电动汽车车载充电器,考虑谐波含量、体积及抗干扰性能等方面的设计需求,重点研究PFCAC/DC变换

3、器,包含系统主电路和控制电路设计,并在上述研究的基础上,开展系统仿真和实验测试验证研究,电路图见图2。    图2BoostPFCAC/DC变换器电路原理图  1BoostPFCAC/DC变换器  本文针对功率为2kW的车载充电器PFCAC/DC变换器,采用基于Boost拓扑的主电路结构,以及连续模式下的平均电流控制控制策略。主电路由整流电路和Boost升压电路构成;控制电路采用电流内环、电压外环的双闭环控制方式,原理框图见图3。    图3主电路和控制电路原理框图  2PFCAC/DC变换器主电路设计  PFCAC/DC变换器主电路由输出滤波电容、开关器件、升压电感等

4、器件构成,其参数设计如下。  2.1输出滤波电容  输出滤波电容可滤除由开关动作造成的输出电压纹波,同时能够维持输出电压在一定范围内,选取的器件需较好地实现以上两个功能。  2.1.1考虑输出纹波电压    式中:Co为输出滤波电容,Pout为主电路输出功率,fin为电网输入电压频率,△Vout为主电路输出纹波电压峰峰值,Vout为主电路输出电压。  2.1.2考虑电压维持时间    式中:△t为主电路输出电压由Vout降到Vout(min)的时间。  据计算结果,选取3个220μF/400V、1个330μF/400V电解电容并联。  2.2开关器件  功率管开关器件的

5、选择主要考虑以下参数:耐压值、通态电流值以及功率管开关频率。在高开关频率场合,常选取MOS管,但单个MOS管通态电流较小,为了增加通流能力,本系统选用两个MOS管并联。选取器件时,流过MOS管电流取2倍裕量,MOS管两端电压取1.2倍裕量。为了增加通流能力,选取两只IPA60R165CP(650V,21A)并联。  2.3升压电感  升压电感的设计思路为:首先计算电感量,然后选择合适的磁芯材料,最后结合磁路饱和对电感量的影响,选取合适的电感量及材料。  电感量的计算公式为:    式中:Vin为主电路输入电压,f为开关频率,Lmin为电感量最小值,△Ilmax为电感电流

6、纹波最大值。升压电感最小取值随之确定,为108μH。  确定电感量后,需选取合适的磁芯材料。APFC电路的升压电感磁芯材料有:磁粉芯、铁氧体磁芯和有隙非晶/微晶合金磁芯等。综合分析,考虑铁硅铝磁粉芯的磁通密度(BS)高、体积小且不用开气隙的优点,选择铁硅铝磁粉芯作为磁芯材料。  当主电路电流很大时,电感会出现直流偏置,导致磁路饱和。电流越大,磁路饱和程度越大。故选择电感磁芯时,需考虑磁路饱和的问题。综合考虑,选取型号为KS184060A的铁硅铝磁芯60匝,当磁路饱和程度最大时,电感量仍为110μH,略大于108μH。  3PFCAC/DC变换器控制电路设计  控制电路采

7、用双闭环结构:外环为电压环,内环为电流环,电流环控制主电路输入电流跟踪参考电流,实现功率因数校正。电压环的输出电压与输出参考电压经电压误差放大器比较后的输出信号与前馈电压和输入电压经过乘法器运算,得到电流环的输入参考电流。通过电流环的调节,产生主电路开关管通断的驱动信号,实现系统功率因数校正且输出稳定的直流电压。乘法器的作用主要为信号相乘,此处,本文重点研究电压环和电流环的设计。  3.1电压环设计  电压环的作用之一是将输出电压的变化反馈给电流环;作用之二是将二次谐波电压衰减到指定水平,以降低输入电流的畸变。另外,由于输出电容的充、放电

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。