欢迎来到天天文库
浏览记录
ID:25503040
大小:50.50 KB
页数:5页
时间:2018-11-20
《论学生创造性思维的培养论文》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、论学生创造性思维的培养论文摘要:数学是一门逻辑性极强的学科。在高等数学教学中,如何利用学科特点有效地组织教学,培养学生的创造性思维能力,是教学研究中的一个重要课题。引导学生提出问题、采用启发式教学、鼓励学生猜想、训练摘要:数学是一门逻辑性极强的学科。在高等数学教学中,如何利用学科特点有效地组织教学,培养学生的创造性思维能力,是教学研究中的一个重要课题。引导学生提出问题、采用启发式教学、鼓励学生猜想、训练发散思维、利用逆向思维等都是培养学生创造性思维的有效途径。关键词:教学;创造性思维;方法创造性思维是指人们对事物之间的联系进行前所未有的思考并产生创见的思维。创
2、造性思维不仅是深刻揭示事物的本质和规律的主要思维形式,而且能够产生出独特的、新颖的思想和成果,这是它与其他思维形式的根本区别。数学创造性思维,是一种十分复杂的心理和智能活动,需要有创见的设想和理智的判断。它的主要特征是新颖性、独创性、突破性。数学创造性思维是各种思维形式高度统一协调的综合性思维。在高等数学教学中,可以从以下5个方面着手,培养学生的创造性思维。1.引导学生提出和发现问题提出问题、发现问题是一个重要的思维环节。爱因斯坦说:“提出一个问题往往比解决一个问题更重要。”科学发现过程中的第一个重要环节是发现问题。因此,引导和鼓励学生提出问题、发现问题是很有
3、意义的。即使经过检验发现这个问题是错误的,但对学生思维的训练也是有益的。在高等数学的教学中,教师要抓住适当的时机主动地引导、启发学生提出问题。2.采用启发式教学方式培养创造性思维的核心是启动学生积极思维,引导他们主动获取知识,培养分析问题和解决问题的能力。对于数学中的问题或习题,主要告诉学生应如何去想,从哪方面去想,从哪方面入手,怎么样解决问题。例如在高等数学(上册)有这样一道题:若a0,a1,……,an是满足的实数,证明方程a0+a1+……+anxn=0在(0,1)内至少有一实根。在讲解时可以给学生设计这样几个问题:(1)证明方程根的存在性,我们学过哪几种方
4、法?(2)每种方法的条件、结论各是什么?(3)各方法的区别是什么?(4)本题应该用哪种方法?(5)类似的题目应该怎么考虑?(6)是否可以判断根的唯一性?这样通过提问、讨论,学生不仅会证明这道题,而且类似证明根的存在性的题都会解了,起到了举一反三,事半功倍的作用。3.鼓励学生大胆猜想乔治·波利亚《数学的发现》一书中曾指出:“在你证明一个数学定理之前,你必须猜想出这个定理,在你搞清楚证明细节之前你必须猜想出证明的主导思想。”猜想,是一种领悟事物内部联系的直觉思维,常常是证明与计算的先导,猜想的东西不一定是真实的,其真实性最后还要靠逻辑或实践来判定,但它却有极大的创
5、造性。在高等数学教学中,要鼓励学生大胆猜想,从简单的、直观的入手,根据数形对应关系或已有的知识,进行主观猜测或判断,或者将简单的结果进行延伸、扩充,从而得出一般的结论。比如,从(xa)’=2x猜想到一般的(xa)1=axa-1(a∈R)。在常系数齐次线性微分方程的求解时,根据方程的特点,猜想它可能有型如erx的解,然后代入方程,确定出特征根r,即得方程的解。又如,格林公式是用平面的曲线积分表示二重积分,在此基础上,人们猜想能否用空间的曲线积分来表示面积分呢?这种猜想导致了高斯公式和斯托克公式的产生。因此在教学中应鼓励学生进行大胆的猜想,这对于创造性思维的产生和
6、发展有极大的作用。4.训练学生进行发散思维发散思维是根据已知信息寻求一个问题多种解决方案的思维方式,不墨守成规,沿多方向思考,然后从多个方面提出新假设或寻求各种可能的正确答案。发散思维是创造性思维的主导成分。因此,在高等数学教学中,应采用各种方式对学生进行发散性思维能力的培养。比如,教师在讲课时对同一问题可用不同的方法进行多方位讲解或给出不同的答案。在对知识总结时,可以从不同角度进行总结概括。如一题多解就是典型的发散思维的应用。5.充分利用逆向思维逆向思维是相对于习惯思维的另一种思维方式,它的基本特点是:从已有思路的反方向去思考问题。顺推不行,考虑逆推;直接解
7、决不行,想办法间接解决;正命题研究过后,研究逆命题;探讨可能性发生困难时,考虑探讨不可能性。它有利于克服思维习惯的保守性,往往能产生某些意想不到的效果,促进学生数学创造性思维的发展。培养逆向思维的方法可从下面几个方面去做:第一,注意阐述定义的可逆性;第二,注意公式的逆用,逆用公式与顺用公式同等重要;第三,对问题常规提法与推断进行反方向思考;第四,注意解题中的可逆性原则,如解题时正面分析受阻,可逆向思考。总之,在高等数学的教学中,要以有关知识为载体,在传授知识的同时,要有意识地渗透和突出数学思想,自觉地培养学生创造性思维能力,使学生在获得知识的同时,也学到了思考
8、问题的方法,提高了分析问题、解决问题的
此文档下载收益归作者所有