在薄壁框架节点处的扭转翘曲传递:运动学分析、建模和结构响应

在薄壁框架节点处的扭转翘曲传递:运动学分析、建模和结构响应

ID:243741

大小:1.86 MB

页数:11页

时间:2017-07-13

在薄壁框架节点处的扭转翘曲传递:运动学分析、建模和结构响应_第1页
在薄壁框架节点处的扭转翘曲传递:运动学分析、建模和结构响应_第2页
在薄壁框架节点处的扭转翘曲传递:运动学分析、建模和结构响应_第3页
在薄壁框架节点处的扭转翘曲传递:运动学分析、建模和结构响应_第4页
在薄壁框架节点处的扭转翘曲传递:运动学分析、建模和结构响应_第5页
资源描述:

《在薄壁框架节点处的扭转翘曲传递:运动学分析、建模和结构响应》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、在薄壁框架节点处的扭转翘曲传递:运动学分析、建模和结构响应C.Basaglia,D.Camotim*,N.Silvestre【摘要】本文叙述了简单运动学模型的使用,来模拟薄壁框架节点处在梁的有限元结构分析的情况下扭转翘曲的约束和传递。本文在回顾薄壁杆件的扭转行为所涉及的主要概念后,强调运动学模型的发展,旨在模拟连接两个或两个以上不对齐的平整通道(U型截面)或者I型截面的框架节点处的扭转翘曲传递。最后,为了说明应用和展示上述运动学模型的功能,介绍和讨论了数据结果,这些运动学模型使得利用能说明节点处扭转翘曲行为的梁有限元模型成为可能。出于验证

2、的目的,将梁有限元获得的结果和由严格的壳有限元分析产生的值进行了比较。【关键词】薄壁型钢框架、框架节点、扭转翘曲构件、节点扭转翘曲传递、梁有限元1、引言由于薄壁型钢框架往往是建立在有着低扭转刚度和高翘曲控制的敏感性的细长开放截面构件上,所以全面分析结构的节点行为的形成是一个相当复杂的工作。一般情况下,只能通过使用壳或者固体有限元模型来严格地执行,这是一种需要大量计算(包括数据输入和结果解释)[1,2]的方法。然而,在设计师明显支持使用基于梁有限元模型基础上、快速且易于使用的数值工具来分析框架(全面的)结构行为的情况下,这样的方法对于常规应

3、用(例如工业建筑的设计)显然是不行的,却往往忽视了在节点处的扭转翘曲约束和传递的影响。值得注意的是,只说明相同(或圣维南)扭转的梁有限元构型简单得多,这是因为它只要求考虑每个节点6个自由度:3个位移和3个旋转角。所有这些都可以在一个连接着不同方向的杆件的框架节点处直接涉及到。然而,众所周知,翘曲扭转在开放截面的薄壁构件[3]的结构响应中起着关键作用,所以一份严谨的框架分析不可避免地要考虑到它——这通常是通过列入第7个节点自由度来完成。这是为了描述由于扭转引起的横截面翘曲(轴向变形),即基于考虑了“翘曲自由度”的弗拉索夫(Vlasov)理论

4、[4]基础上的梁有限元。然而,通过弗拉索夫的梁有限元,在框架全局结构分析中错误的主要来源是由于在节点处翘曲约束和传递的不充分建模——这些影响的相关性随着节点构型和相连杆件的轴向和截面形状而变化。关于在仅连接两个非对齐构件的框架节点处扭转角和扭转翘曲位移的传递,在过去的数十年里有许多调查报告。其中,值得一提的是(i)弗契瑞杰提夫(Vacharajittiphan)和查哈尔(Trahair)[5]的报告,处理了在不对齐的双向对称的I型截面构件处的翘曲约束/传递。另外,(ii)莫雷尔(Morrell)[6]和莫雷尔[7]等,他们研究了存在于正交

5、的平整通道(U型截面)杆件上截面端部扭转角度之间的关系。还有(iii)沙曼(Sharman)[8]、库瑞克(Krenk)、旦克尔得(Damkilde)[9]和汤(Tong)[10]等,他们调查了在不同构型的节点处相连的任意方向的U型和I型截面构件端截面之间的翘曲传递。有一点仍然应该指出,在I型截面构件框架的情况下,参考文献[9,10]提出了翘曲传递模型,这种模型考虑了储存在节点处的局部应变能。然而,这个构想只适用于一种非常明确的截面局部变形。这些研究人员采用了(壳和梁)有限元模型来进行分析,并且取得的成果明确地证明了,处理涉及节点扭转的角

6、位移和扭转翘曲位移的传递机制是不容易的。符号b横截面翼缘宽度h截面腹板高度u翘曲位移c剪切中心截面积扭转角度拉格朗日乘数Φ平面翼缘中线的角度Π约束条件[K]框架刚度矩阵{d}位移向量{F}作用力向量有关平面和空间的薄壁框架全局行为的分析,由于它的主要困难之一来源于需要处理在连接着两个或两个以上不对齐杆件的节点处的扭转翘曲传递,笔者最近开发了运动学模型来模拟在屈曲分析中的这个现象。这个分析是通过基于广义梁理论(GBT)的梁有限元方法得出的。特别是,某些框架节点(i)连接两个或两个以上不对齐的U型截面或者I型截面构件(带翼缘或者腹板连续)并且

7、显示构型,我们普遍认为在这些框架节点处的扭转翘曲变形传递通常用于建立框架[12]。这项工作的目的是(i)简要回顾在上一段中提到的运动学模型的发展和(ii)介绍讨论一项研究成果。这项研究旨在评估将其纳入框架分析所产生的结果,这个分析通过常规(和商业)的基于弗拉索夫理论的梁有限元进行。弗拉索夫理论目前很容易在设计室使用(比如,ANSYS[13]、ABAQUS[14]或者ADINA[15])。首先,对于连接两个或两个以上不对齐的U型截面或I型截面构件的框架节点处,描述一下它们扭转翘曲传递的运动学模型所涉及的概念和程序。然后,谈谈(i)用于这项工

8、作的节点构型(非加强的,斜肋,肋框,斜/箱肋节点——这些连接U型截面构件的节点示意图,如图1(a)—(d)所示)和(ii)它们如何影响相连构件端截面的扭转角度和翘曲位移的传递。最后,通过介绍和

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。