图1单级PFC变换器图中:vAC为交流输入电源;L1为Boost电感;C1为中间储能电容;RL为变换器负载。500)"> 图1单级PFC变换器图中:vAC为交流输入电源;L1为Boost电感;C1为中间储能电容;RL为变换器负载。500)" />
欢迎来到天天文库
浏览记录
ID:24314884
大小:49.50 KB
页数:4页
时间:2018-11-13
《单级pfc变换器的功率因数校正效果的研究》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、单级PFC变换器的功率因数校正效果的研究
2、第1内容显示中1前言为了使500)this.style.ouseg(this)">图1单级PFC变换器图中:vAC为交流输入电源;L1为Boost电感;C1为中间储能电容;RL为变换器负载。500)this.style.ouseg(this)">图2电路的主要电流波形图中:ugs为开关管S的控制信号;Ts为开关周期;D为占空比。在一个开关周期内,电路的工作过程如下。状态1[t0-t1]S,D2和D3导通,D1和D4截止,电源vAC向电感L1充电,流过电感L1上的电流线性增长,C1经T1向Lo,Co和RL
3、放电。S在t1时刻截止,电感L1上的电流为最大值:iL1,P=500)this.style.ouseg(this)">DTs(1)iD1=0,iD2=iL1(2)状态2[t1-t2]S,D2和D3截止,D1和D4导通,vAC和L1通过D1给C1充电,负载RL两端电压由Lo和Co的储能维持。在t2时刻,L1中的能量完全释放,电流为零。在这期间iL1=iL1,P-500)this.style.ouseg(this)">(t-DTs)(3)iD1=iL1,iD2=0(4)状态3[t2-(t0+Ts)]S,D2和D3截止,由于D1的存在,L1上的电流不
4、能反向,因此为零,即D1也截止,D4仍导通,负载RL两端电压由Lo和Co储能维持。2.2输入电流分析在状态1和2期间,Boost电感中的能量完全释放,根据磁通守恒原理有
5、vAC
6、DTs=(VC1-
7、vAC
8、)D21Ts(5)可以得到D21=500)this.style.ouseg(this)">D(6)所以,在一个开关周期内,平均输入电流为iL1(avg)=500)this.style.ouseg(this)">(iL1,PD+iL1,PD21)=500)this.style.ouseg(this)">D2Ts500)this.style.ou
9、seg(this)">(7)设
10、vAC
11、=
12、VINsin(ωt)
13、,其中VIN为输入电压的峰值。所以iL1(avg)=500)this.style.ouseg(this)">500)this.style.ouseg(this)">=kβ500)this.style.ouseg(this)">(8)式中:k=500)this.style.ouseg(this)">;β=500)this.style.ouseg(this)">。在单级PFC变换器中,输入电流在固定占空比下被分解为三角脉冲波,电流峰值将自动跟随输入电压。但是,这种通过电压跟随方式取得
14、的电流波形并非理想的正弦波。由于Boost电感的放电时间受到VC1的影响,因此,平均输入电流呈现一定程度的畸变[2]。由式(8)可知,平均输入电流与β之间有一个固定的关系,如图3所示。500)this.style.ouseg(this)">图3平均输入电流的波形2.3功率因数表达式输入电流有效值为iL1(rms)=500)this.style.ouseg(this)">(9)令z=500)this.style.ouseg(this)">,则有iL1(rms)=kβ500)this.style.ouseg(this)">(10)变换器的平均输入功
15、率为PIN=500)this.style.ouseg(this)">
16、vAC
17、iL1(avg)dωt=500)this.style.ouseg(this)">VINkβ500)this.style.ouseg(this)">=500)this.style.ouseg(this)">y(11)式中:y=500)this.style.ouseg(this)">变换器的功率因数可表示为PF=500)this.style.ouseg(this)">=500)this.style.ouseg(this)">(12)式中:Vrms=500)this.sty
18、le.ouseg(this)">。由式(12)可知,变换器的功率因数与β也存在一个固定的关系。3仿真与实验结果为了验证理论分析结果,进行了仿真与实验。电路参数为:vAC=200500)this.style.ouseg(this)">sinωtV,L1=0.103mH,C1=270μF,变换器的开关频率120kHz。当负载变化的时候,储能电容C1的电压随着负载的减小而增大,从而使得β发生变化。当β=0.7或0.9时,仿真结果如图4所示。500)this.style.ouseg(this)">(a)β=0.7时输入电压与电流波形500)this.s
19、tyle.ouseg(this)">(b)β=0.9时输入电压与电流波形图4仿真波形图为了进一步验证,搭建了实验模型,实验波形如图5所示。可见仿真与实
此文档下载收益归作者所有