欢迎来到天天文库
浏览记录
ID:22652534
大小:87.00 KB
页数:23页
时间:2018-10-30
《数学12种课型基本流程》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、一、情境串理念下的概念教学基本流程经过反复的教学实践与研究,我们构建了情境串理念下概念教学的基本流程。创设情境,提供素材分析素材,理解概念借助素材,总结概念适当外延,深化概念巩固拓展,应用概念1、创设情境,提供素材概念教学是较为枯燥、抽象的,而小学生的心理特征又很容易理解和接受直观、具体的感性材料。我们在教学时要创设贴近学生生活实际的情境,提供丰富的素材,调动起学生自主探索解决问题的热情,为学生理解、总结概念奠定基础。2、分析素材,理解概念概念的获得是学生经过分析、综合、比较、抽象、概括的结果。当学生产生探究欲望和具备了一定的思考基础之后,教师要努力给学生创造学习数学的生动场景,让
2、学生经历独立观察思考、小组互动、合作交流的过程,通过对素材的分析,形成对概念的初步理解。3、借助素材,总结概念概念的形成不是一次完成的,要经过多层次的比较、分析与综合,才能真正发展学生的思维结构,让学生真正理解概念。作为具有丰富个性的能动主体,小学生会对新概念产生不同的理解和建构,因此,教师要在小组合作探究之后,让小组选代表借助素材,介绍自己组的成果。通过小组之间的交流、争辩,再加上教师的引导,使错误的认识得到纠正,正确的理解更加深刻,进而共同揭示出概念。4、巩固拓展,应用概念学习数学概念的重要目的是运用这些概念解决实际问题。教师在设计应用概念的问题时,要注重创设情境,在丰富的素材
3、中,让学生体验到数学与生活的密切联系,进一步激发学生的学习兴趣,同时让概念教学的每个环节,都体现出相对完整及其密切联系,有利于学生体验概念学习的科学研究过程。当然,根据具体的概念,有时在第三个环节总结出概念之后,还要结合概念的外延做进一步探索。概念的外延是指概念所反映的那一类事物。如“三角形”概念的外延,是锐角三角形、钝角三角形和直角三角形。在学习了三角形概念的内涵是“由不在一直线上的三条线段所围成的封闭图形”之后,还要适当对三角形概念的外延做介绍,以期深化概念。需要指出的是,教学模式是在一定的教学思想或理论指导下建立起来的,这个结构不是机械和僵硬的,要因人、因材、因时等客观因素而
4、合理、灵活运用,可进行必要的调整、增删、穿插、渗合。二、情境串理念下的计算教学基本流程情境串理念下计算教学的基本流程可以表述如下:创设情境,自主探索算法交流,分析比较沟通优化,促进发展联系实际,灵活运用1、创设情境,自主探索新课程将计算教学作为解决问题的一个组成部分,在导入阶段,应注重结合学生的年龄特征,创设学生感兴趣的现实情境,引导学生结合情境发现并提出数学问题,让学生在解决问题的过程中产生计算的需要,这种需要能激发学生的计算热情和学习新算法的积极性,诱发学生探索性的思维活动。教学中教师应该鼓励学生独立思考,自主探索出各种算法,引导学生从不同的角度、不同的层面,以不同的观点去思考
5、,让学生能够感受到算法多样化带来的快乐。给不同层面的学生以展示的机会,同时教师也有了了解学生思维特点的机会,为后续教学打下基础。2、算法交流,分析比较把多种多样的算法呈现出来后,教师一定要为学生的多种算法提供交流的机会。让学生自己去交流、比较、反思和感悟各种算法,或同意或反驳,在交流中甄别,并选择适合自己的算法。教师不应强调算法全面化,应以学生的发展为本,让学生探索出适合自身需求的解题方法,书上有的未必要全部展示出来,书上没有的,学生如能自己发现,并且确有创意和价值,一定要充分肯定,然后通过反馈交流、评价沟通,让学生体验、学习别人的思维活动的成果,掌握适合自己的一种或几种算法。教师
6、如果一直放任学生这样低层次的算法,而不帮他抽象出基本算法,那么学生的思维将永远处于较低的水平,对他后续的学习将带来较大的障碍。在此过程必须把算法多样化与算法优化一并要求。3、沟通优化,促进发展在计算时,教师要引导学生注意沟通各种方法之间的联系,提倡学生用自己喜欢的方法计算,同时也要着力引导学生掌握基本的算法,促进其数学思维的深度发展,使学生在面对具体情境和具体数据时能选用比较灵活的计算方法。通过练习、比较,发现错误,及时指导,加强学生对基础知识的理解、对基本技能的形成。4、联系实际,灵活运用教师可以在课堂中设计不同的练习,引导学生把所学知识联系运用于生活实际,可以使所学知识得到继续
7、扩展和延伸。此外,还可以让学生体会到数学的应用价值,使学生体会到生活中处处有数学,数学就在身边。三、规律性质教学基本流程情境串理念下探索规律教学的基本流程可以用如下图示来表述:创设情境,感知规律研究素材,猜测规律讨论交流,验证规律巩固拓展,应用规律1、创设情境,感知规律探索规律教学内容看起来多是研究数、式的变化规律,数、形的排列规律等,比较抽象和符号化,其实许多内容都可以在学生的生活实际中找到背景。把生活问题,通过学生的理解转化成数学问题,这是思维的抽象,也是数学化的
此文档下载收益归作者所有