《完全平方公式》教学设计

《完全平方公式》教学设计

ID:22565362

大小:71.00 KB

页数:7页

时间:2018-10-30

《完全平方公式》教学设计_第1页
《完全平方公式》教学设计_第2页
《完全平方公式》教学设计_第3页
《完全平方公式》教学设计_第4页
《完全平方公式》教学设计_第5页
资源描述:

《《完全平方公式》教学设计》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、《完全平方公式》教学设计【教材分析】本节内容是初中数学(北师大版)七年级下册第一章《整式的运算》中的——1.8完全平方公式。一、教材的地位和前后联系:完全平方公式是初中数学中的重要公式,在整个中学数学中有着广泛的应用.一方面完全平方公式这一教学内容是学生在已经学习单项式乘法、多项式乘法及平方差公式基础上的拓展,是对多项式乘法中出现的较为特殊的算式的一种归纳、总结;另一方面,又为学习《因式分解》《配方法》等知识奠定了基础,是进一步研究《一元二次方程》《二次函数》的工具性内容。二、教材设计的思想方法:教材按照学生的认知规律,从具

2、体到抽象,由直观图形引导学生观察、实验、猜测、进而论证,最后建立数学模型,使学生对公式从感性认识、直观认识到本质认识。逐步培养学生的逻辑推理能力和建模思想。由此,本节课不仅有着广泛的实际应用,而且起着承前启后的作用,它在本章中起着举足轻重的作用。【学情分析】1.认知基础:学生已学习了整式的概念、整式的加减、幂的运算、整式的乘法、平方差公式,这些基础知识的学习为本节课的学习奠定了基础。但是对于几何图形如何用代数来表示,从而表示图形的面积,学生会有一定困难,另外,在具体运用公式时,学生的感性认识往往表现比较突出,一部分学生总是会

3、出现(a+b)2=a2+b2,(a-b)2=a2-b2的问题,对公式中a、b的理解,对“和”“差”符号的区别也会有些障碍。2.活动经验基础:在平方差公式一节中,学生已经经历了探索与应用的过程,获得了一些数学活动的经验,培养了一定的符号感和推理能力。  3.心理特征:初中阶段的学生逻辑思维能力、观察能力,记忆能力和想象能力都有一定的局限性,感性认识往往表现比较突出,很多学生还是处于模仿学习的思维阶段,但同时,这一阶段的学生好动,注意力易分散,爱发表见解,希望得到老师的表扬,所以在教学中应抓住这些特点,一方面运用直观生动的图形7

4、,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面,发挥学生学习的主动性,要创造条件和机会,让学生发表见解,在辨别中提高认识。【教学目标】1、知识与技能:体会公式的发现和推导过程,了解公式的几何背景,理解公式的本质,会应用公式进行简单的计算。2、过程与方法:通过让学生经历探索完全平方公式的过程,培养学生观察、发现、归纳、概括、猜想等探究创新能力,发展推理能力和有条理的表达能力。培养学生的数形结合能力。3、情感态度价值观:体验数学活动充满着探索性和创造性,并在数学活动中获得成功的体验与喜悦,树立学习自信心。【教学重点】

5、1、对公式的理解,包括它的推导过程、结构特点、语言表述(学生自己的语言)、几何解释。2、会运用公式进行简单的计算。【教学难点】1、完全平方公式的推导及其几何解释。2、完全平方公式的结构特点及其应用【教学方法】“探究式学习”。在教学中,突出学生的主动性、参与性,让学生通过观察特点——分析——归纳总结——得出结论,初步掌握探究的学习方法。【学法指导】积极参与交流探讨,从学习中感受乐趣,及时地归纳总结、发现问题、解决问题。【教学课型】新授课【课时安排】一课时7【教学过程】一、复习旧知、引入新知设计说明问题1,2,3的设置目的在于使

6、学生回顾旧知识的同时引导学生回顾平方差公式的学习过程,为本节课的类比学习奠定基础。而问题4的设置目的在于教师根据学生的认知能力,预设到学生可能出现不同的结果。如:一部分学生得出:(1)(a+b)2=a2+b2(2)(a-b)2=a2-b2一部分学生得出正确结果。不同的结果,可引发学生的争议和思考,可激发学生强烈求知欲望,也为正确认识公式奠定了基础。这样,也创造机会,让学生发表见解,有意识地培养学生有条理地思考和语言表达能力。问题1:请说出平方差公式,说说它的结构特点。问题2:平方差公式是如何推导出来的?问题3:平方差公式可用

7、来解决什么问题,举例说明。问题4:想一想、做一做,说出下列各式的结果。(1)(a+b)2(2)(a-b)2(此时,教师可让学生分别说说理由,并且不直接给出正确评价,还要继续激发学生的学习兴趣。)二.创设问题情境、探究新知设计说明(a+b)2=a2+b2(a-b)2=a2-b2是学生学习完全平方公式时经常出现的问题,并且很难以纠正,以下设置目的在于一方面通过让学生经历探索完全平方公式的过程,培养学生观察、猜想、发现、归纳、概括等探究创新能力,发展推理能力和有条理的表达能力。一方面使学生对公式第一次就有充分的感性认识。以免出现以

8、上错误。也能使学生体会到猜想感觉得到的不一定正确,需要验证。一块边长为a米的正方形实验田,因需要将其边长增加b米,形成四块实验田,以种植不同的新品种。(如图)ab⑴四块面积分别为:、、、;b⑵两种形式表示实验田的总面积:7①整体看:边长为的大正方形,S=;aa②部分看:四块面积的和,S=。

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。