新人教版第16章二次根式全章教案

新人教版第16章二次根式全章教案

ID:2093701

大小:546.00 KB

页数:18页

时间:2017-11-14

新人教版第16章二次根式全章教案_第1页
新人教版第16章二次根式全章教案_第2页
新人教版第16章二次根式全章教案_第3页
新人教版第16章二次根式全章教案_第4页
新人教版第16章二次根式全章教案_第5页
资源描述:

《新人教版第16章二次根式全章教案》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、二次根式单元备课    教材内容     1.本单元教学的主要内容: 二次根式的概念;二次根式的加减;二次根式的乘除;最简二次根式.2.本单元在教材中的地位和作用: 二次根式是数与代数中重要内容之一.前面学生较系统地学习了有理数及其运算;学习了平方根和算术平方根、立方根的概念、用根号表示数的平方根、立方根;知道了开方与乘方互为逆运算,会用平方运算和立方运算求某些非负数的平方根以及某些数的立方根.   教学目标     1.知识与技能     (1)理解二次根式的概念. (2)理解a(a≥0)是一个非负数,(a)2=a(a≥0),2a=

2、a(a≥0).     (3)掌握a·b=ab(a≥0,b≥0),ab=a·bab=ab(a≥0,b>0),ab=ab(a≥0,b>0).     (4)了解最简二次根式的概念并灵活运用它们对二次根式进行加减.     2.过程与方法 (1)先提出问题,让学生探讨、分析问题,师生共同归纳,得出概念.•再对概念的内涵进行分析,得出几个重要结论,并运用这些重要结论进行二次根式的计算和化简.     (2)用具体数据探究规律,用不完全归纳法得出二次根式的乘(除)法规定,并运用规定进行计算. (3)利用逆向思维,得出二次根式的乘(除)法规定的

3、逆向等式并运用它进行化简.     (4)通过分析前面的计算和化简结果,抓住它们的共同特点,给出最简二次根式的概念.利用最简二次根式的概念,来对相同的二次根式进行合并,达到对二次根式进行计算和化简的目的.     3.情感、态度与价值观 通过本单元的学习培养学生:利用规定准确计算和化简的严谨的科学精神,经过探索二次根式的重要结论,二次根式的乘除规定,发展学生观察、分析、发现问题的能力.   教学重点 1. 二次根式(a≥0)的内涵.a(a≥0)是一个非负数;(a)2=a(a≥0); 2a=a(a≥0)及其运用. 2.二次根式乘除法的规

4、定及其运用.     3.最简二次根式的概念.     4.二次根式的加减运算.     教学难点     1.对a(a≥0)是一个非负数的理解;对等式(a)2=a(a≥0)及2a=a(a≥0)的理解及应用. 2.二次根式的乘法、除法的条件限制. 3.利用最简二次根式的概念把一个二次根式化成最简二次根式.     教学关键     1.潜移默化地培养学生从具体到一般的推理能力,突出重点,突破难点. 2.培养学生利用二次根式的规定和重要结论进行准确计算的能力,培养学生一丝不苟的科学精神.     单元课时划分 本单元教学时间约需9课时,

5、具体分配如下:     16.1  二次根式            2课时     1816.2  二次根式的乘法      3课时     16.3  二次根式的加减      2课时     数学活动、习题课、小结     2课时第十六章二次根式第1课时16.1二次根式(1)教学目标1、知识与技能:理解二次根式的概念,并利用(a≥0)的意义解答具体题目.2、过程与方法:提出问题,根据问题给出概念,应用概念解决实际问题.经历观察、比较,总结二次根式概念和被开方数取值的过程,发展学生的归纳概括能力。3、情感态度与价值观:经历观察、比较

6、和应用等数学活动,感受数学活动充满了探索性和创造性,体验发现的快乐,并提高应用的意识。教学重难点1.重点:形如(a≥0)的式子叫做二次根式的概念;2.难点:利用“(a≥0)”解决具体问题教学过程一、复习引入(1)已知x2=a,那么a是x的______;x是a的______,记为____,a一定是_____数。(2)4的算术平方根为2,用式子表示为=__________;正数a的算术平方根为_______,0的算术平方根为_______;式子的意义是。思考:教材P2思考二、探索新知很明显,都是一些正数的算术平方根.像这样一些正数的算术平

7、方根的式子,我们就把它称二次根式.因此,一般地,我们把形如(a≥0)的式子叫做二次根式,“”称为二次根号.思考:(1)-1有算术平方根吗?(2)0的算术平方根是多少?(3)当a<0,有意义吗?18三、例题讲解例1.下列式子,哪些是二次根式,哪些不是二次根式:、、、(x>0)、、、、、(x≥0,y≥0).分析:二次根式应满足两个条件:第一,有二次根号“”;第二,被开方数是正数或0.例2(教材P2例1)当x是怎样的实数时,在实数范围内有意义?解:由≥0,得:x≥2.所以当x≥2时,在实数范围内有意义.四、巩固练习:教材P3练习1、2.补充

8、练习:1、当x是多少时,+在实数范围内有意义?2、(1)已知y=++5,求的值.(2)若+=0,求a+b的值.五、归纳小结本节课要掌握:1.形如(a≥0)的式子叫做二次根式,“”称为二次根号.2.要使二次根式在实数范围内

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。