鸡兔同笼类问题中的各种解法分析小汇总

鸡兔同笼类问题中的各种解法分析小汇总

ID:20819784

大小:44.00 KB

页数:12页

时间:2018-10-16

鸡兔同笼类问题中的各种解法分析小汇总_第1页
鸡兔同笼类问题中的各种解法分析小汇总_第2页
鸡兔同笼类问题中的各种解法分析小汇总_第3页
鸡兔同笼类问题中的各种解法分析小汇总_第4页
鸡兔同笼类问题中的各种解法分析小汇总_第5页
资源描述:

《鸡兔同笼类问题中的各种解法分析小汇总》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、WORD文档下载可编辑鸡兔同笼类问题中的各种解法分析小汇总1.典型鸡兔同笼问题详解  例1鸡兔同笼是我国古代的著名趣题。大约在1500年前,《孙子算经》中就记载着“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”翻译成通俗易懂的内容如下:  鸡兔共有35个头,94只脚,问鸡兔各有多少只?经梳理,对于这一类问题,总共有以下几种理解方法。  (1)站队法  让所有的鸡和兔子都列队站好,鸡和兔子都听哨子指挥。那么,吹一声哨子让所有动物抬起一只脚,笼中站立的脚:94-35=59(只)  那么再吹一声哨子,

2、然后再抬起一只脚,这时候鸡两只脚都抬起来就一屁股坐地上了,只剩下用两只脚站立的兔子,站立脚:59-35=24(只)  兔:24÷2=12(只);鸡:35-12=23(只)  (2)松绑法  由于兔子的脚比鸡的脚多出了2个,因此把兔子的两只前脚用绳子捆起来,看作是一只脚,两只后脚也用绳子捆起来,看作是一只脚。专业技术资料分享WORD文档下载可编辑鸡兔同笼类问题中的各种解法分析小汇总1.典型鸡兔同笼问题详解  例1鸡兔同笼是我国古代的著名趣题。大约在1500年前,《孙子算经》中就记载着“今有雉兔同笼,上有三十五

3、头,下有九十四足,问雉兔各几何?”翻译成通俗易懂的内容如下:  鸡兔共有35个头,94只脚,问鸡兔各有多少只?经梳理,对于这一类问题,总共有以下几种理解方法。  (1)站队法  让所有的鸡和兔子都列队站好,鸡和兔子都听哨子指挥。那么,吹一声哨子让所有动物抬起一只脚,笼中站立的脚:94-35=59(只)  那么再吹一声哨子,然后再抬起一只脚,这时候鸡两只脚都抬起来就一屁股坐地上了,只剩下用两只脚站立的兔子,站立脚:59-35=24(只)  兔:24÷2=12(只);鸡:35-12=23(只)  (2)松绑法 

4、 由于兔子的脚比鸡的脚多出了2个,因此把兔子的两只前脚用绳子捆起来,看作是一只脚,两只后脚也用绳子捆起来,看作是一只脚。专业技术资料分享WORD文档下载可编辑  那么,兔子就成了2只脚。则捆绑后鸡脚和兔脚的总数:35×2=70(只)  比题中所说的94只要少:94-70=24(只)。  现在,我们松开一只兔子脚上的绳子,总的脚数就会增加2只,不断地一个一个地松开绳子,总的脚数则不断地增加2,2,2,2……,一直继续下去,直至增加24,  因此兔子数:24÷2=12(只)从而鸡数:35-12=23(只)  (

5、3)假设替换法  实际上替代法的做题步骤跟上述松绑法相似,只不过是换种方式进行理解。  假设笼子里全是鸡,则应有脚70只。而实际上多出的部分就是兔子替换了鸡所形成。每一只兔子替代鸡,则增加每只兔脚减去每只鸡脚的数量。  兔子数=(实际脚数-每只鸡脚数*鸡兔总数)/(每只兔脚数-每只鸡脚数)  与前相似,假设笼子里全是兔,则应有脚120只。而实际上不足的部分就是鸡替换了兔子所形成。每一只鸡替代兔子,则减少每只兔脚减去每只鸡脚的数量,即2只。  鸡数=(每只兔脚数*鸡兔总数-实际脚数)/(每只兔脚数-每只鸡脚数

6、)专业技术资料分享WORD文档下载可编辑  将上述数值代入方法(1)可知,兔子数为12只,再求出鸡数为23只。  将上述数值代入方法(2)可知,鸡数为23只,再求出兔子数为12只。  由计算值可知,两种替代方法得出的答案完全一致,只是顺序不同。由替代法的顺序不同可知,求鸡设兔,求兔设鸡,可以根据题目问题进行假设以减少计算步骤。  (4)方程法  随着年级的增加,学生开始接触方程思想,这个时候鸡兔同笼问题运用方程思想则变得十分简单。  第一种是一元一次方程法。  解:设兔有x只,则鸡有(35-x)只  4x+

7、2(35-x)=94  4x+70-2x=94  x=12  注:方程结果不带单位  从而计算出鸡数为35-12=23(只)专业技术资料分享WORD文档下载可编辑  第二种是二元一次方程法。  解:设鸡有x只,兔有y只。  则存在着二元一次方程组的关系式  x+y=35  2x+4y=94  解方程式可知兔子数为y=12则可计算鸡数为x=23  以述四种方法就是这一典型鸡兔同笼问题的四种不同理解和计算方法,在没有接触方程思想之前,用前三种方式进行理解。在接触方程思想之后,则可以用第四种方法进行学习。 2.鸡

8、兔同笼问题的衍生(非方程思想)专业技术资料分享WORD文档下载可编辑  例2现有100千克的水装了共60个的矿泉水瓶子中。大矿泉水瓶一瓶装3千克,小矿泉水瓶1瓶装1千克,问大、小矿泉水瓶各多少个?  大小瓶共装的100千克水即为总水量,对应上一例中鸡兔总共拥有的74只脚即为总脚数。  大矿泉水瓶1瓶装3千克水对应每只兔子所拥有的4只脚。小矿泉水瓶1瓶装1千克水对应每只鸡所拥有的2只脚。 类型水量总量100总数60

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。